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We study the mutual influence of quadratic and cubic nonlinearities on the propagation of the coupled
fundamental and second harmonic waves in asymmetric optical media. For attractive potentials with positive
coupling parameters, it is shown that, in systems with two and three transverse dimensions, mutually trapped
waves can self-focus until collapse whenever their respective powers exceed some thresholds. On the contrary,
coupled waves diffracting in a one-dimensional plane never collapse and may evolve towards stable solitonlike
structures. For higher transverse dimension numbers, we investigate the question of forming two-component
solitons and determine criteria for their stabilift1063-651X97)13502-4

PACS numbg(s): 42.65.Tg, 02.30.Hq, 42.60.Jf, 42.65.Jx

I. INTRODUCTION which the NLS equation is integrabld5], such localized
beams become unstable in two or more dimensions where
The possibility of generating stable solitonlike beams inthey either disperse or self-focus until a destructive collapse
media with a purely quadratic or so-callgéf’ nonlinearity  takes place at a finite propagation distarisee, e.g., Ref.
has been the subject of many recent investigations, both th¢16]).
oretical [1-9] and experimenta[10-14. These solitary In the light of these features, an important question con-
waves consist of two components, a fundamental wave anderning the propagation of localized coupled waves in mate-
its second harmonic, coupled together through cascaded norials with bothy'?’ and x® nonlinearities is thus to determine
linear three-wave interaction processes that usually takehether they converge towards stable solitary waves, or sim-
place in asymmetric media privileging second harmonic genply spread out, or self-focus until a collapse at a finite propa-
eration. It has recently been shown analytically that stablgation distance. The dynamical equations for coupled waves
two-component solitary waves do exist for all dimensionin media supporting an interplay between these two nonlin-
numbersD of physical interest3,7—9, and that, regardless earities have been derived ji7], and preliminary investi-
of the initial wave functions, a catastrophic collapse shouldyations showed that two-component solitary waves may exist
never occur in purely quadratic materig8§. Here and in the  and be stable in the simplest one-dimensional situaboal
following, the letterD refers to the space dimension number[18—-20. Generally, the evolution of the coupled waves de-
of the transverse plane, perpendicular to the direction opends on their initialor inciden} values and on the trans-
propagation. As will be seen further, dealing with three-verse dimension characterizing the nonlinear equations that
dimensional (3D) waves will mean that the propagation govern their propagation.
equations will account not only for the transverse diffraction In this paper, we investigate the influence of both kinds of
of the wave envelopes, but also for their variations in time. nonlinearities(quadratic and cubjcon the possible forma-
However, even in materials where th&) nonlinearity tion of stable solitary waves and the collapse of unstable
may be dominant, there always exists a cubic or so-calledoupled waves. The model equations are presented in Sec. Il.
x™® nonlinearity. One of the effects of thig? nonlinearity is ~ After deriving the main invariants and the characteristic re-
that the refractive index becomes dependent on the intensitjation governing the mean square radius attached to the fun-
which is also known as the Kerr effect. In media with a damental and second harmonic waves in Sec. Ill, we deter-
purely cubic nonlinearity, this Kerr effect leads to a quite mine some rigorous criteria, for or against the collapse of
different evolution of dispersive, weakly nonlinear wave those mutually trapped waves, depending on their incident
packets, as described by the well-known nonlinear Schrodata atz=0. We detail this question for the pugé’’ nonlin-
dinger (NLS) equation: althoughone-componentsolitons  earity and for the purq@) one, separately, then for the com-
exist and are stable in the one-dimensional casel for  bined problem in Sec. IV. In Sec. V, we analyze the possi-
bility of realizing stable solitonlike structuresso-called
combined orC-type solitons following the terminology in-

*Electronic address: berge@limeil.cea.fr troduced in[18]) for all transverse dimensions of physical
TElectronic address: obal24@rsphysse.anu.edu.au relevanceD <3. Finally, in Secs. VI and VI, we present
*Electronic address: juul@risoe.dk variational and numerical calculations supporting our theo-
SElectronic address: mezentsev@iae.nsk.su retical results. They confirm, in particular, that waves with a
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sufficient power can collapse under the combined influencghase modulation, ang{3)=% % the part of the cubic non-

of x? and ¥'® nonlinearities. linearity that is responsible for the cross-phase modulation.
Equations(1) and (2) are derived using a perturbation
Il. THE PROPAGATION EQUATIONS expansion, in which the normalized amplitude of the field

_ _ _ _plays the role of the small order parametet1, in accor-
The dynamical equations for 1D wave packets in mediajance with the assumption of weak nonlineafity’]. The
with both x® andx® nonlinearities were recently derived in vajidity of Egs.(1) and(2) requires that both the normalized
[17]. The transverse profile of the field was taken into ac-scalar Fourier components of the second-order susceptibility

count, and shown to alter the linear dispersion relation angensor and the phase mismatch are small as defined below:
the strength of the nonlinearity through certain structure co-

efficients. We consider the straightforward extension of these X2 x| ~€, |AB|~ € (5)
equations td dimensions:
_ L, . , , while both the ratiqs|}?_§,3s)/x3| and |}?§f’c)/)(3[ are of order
id,W+sVow+w*v +|w|?w+p|v|*w=0, (1) unity. The normalization parametey; is chosen as
i xa=IxJ|, which then fixesy,=n;\eoxs. This scaling
2i9,0+sV2v—Buv+iw?+\|v|?2v+plw|?v=0, (2) makes the paramet@ which represents the relative strength
of the quadratic and cubic nonlinearity, be of order unity.
where the symbot denotes the complex conjugate function. Whenever one of the dimensions under consideration is as-
Written in a convenient normalized form, Eqd) and (2)  sociated with the retarded time, the special symmetry, as-
are valid when the material is lossless and as long as theumed when writing the equations in the form of E¢B.
fundamental frequency, and its second harmonis,=2w;  and (2), requires that the group-velocity mismatehg’

are far from any internal material resonance. The slowlyz(ki_ké)/(|kg|w1) and the group-velocity dispersion fulffill
varying complex envelope functions of the fundamentalthe requirements

field, w(r, ,z), and of the second harmonie(f, ,z), are

here assumed to propagate with a constant polarization along |A,8’|~62, kq k] =2k,k5<0, (6)

thez axis. The transverse Laplacian refers to a general trans-

verse plane of dimensidd <3, spanned by the radial vector ith kézakp/ﬁwp and k”E&2kp/&w§. This thereby implies

r, . The spatial coordinatex({y) constitute two of the three  that not only the phase mismatch, but also the group-velocity
dimensions and correspond to the usual diffraction, while thenjsmatch, must be small.

third one corresponds to a retarded time, with respect of Among the various parameters defined in B}, we shall
which the variations of the wave envelopes can account fopenceforth consider positive values for the dispersion coeffi-
the group-velocity dispersiof21]. Note that in comparison cjent and therefore set=+1: in the 3D case with two trans-
with the equations given if17], the notation has been yerse spatial coordinates and a retarded time variable, this

changed by a simple transformation. _ can formally modelanomalousgroup-velocity dispersion
We want to study the solutions to Eqgdl) and (2) in  [21].

arbitrary dimension® <3, keeping the linear dispersion re-
lation and the definition of the real parameters, \, andp
unchanged. Therefore, we ignore any effect of the transverse
profile of the field on the linear dispersion relation and on
these parameters. In this case, the quantigts p, and\ are We begin by establishing the main integrals and relations
given by[17] attached to Egs(l) and (2), whosez-dependent solutions
w,v and their derivatives are assumed to be localized in the

[ll. CONSERVED INTEGRALS
AND THE VIRIAL IDENTITY

B ~3) 3 X(fé)/ X3 A transverse space with a sufficient algebraic decréasen-
s=sorixis}, A= 4 (')?(12>/X2)2 B, stancew andv can be supposed to belong to the Sobolev
spaceWs, at least locally irz).
1675 8xyY First, settings=+1, we refind the so-called “power{or
= =@ PT =3 (3  “mass”) integral by multiplying Eqs(1) and(2) by w* and
Xis X1s v*, respectively, which yields, after taking the imaginary

where AB=(2k,—k,)/k; is the phase mismatch ang, part of the results,

=n,Ve€gx3 and y; are given normalization parameters, with
€ being the vacuum permittivity. The wave numbey is
related to the frequency,, by the linear dispersion relation

a,lw[2=—2V - Im(w*V w)—2 Im[(Ww") %], (7)

29,lv|2= =2V, - Im(v*V v)+Im[(W*)2].  (8)
Ko=Npwp/c, ni=1+Rex\"}, (4) . .

We multiply Eq.(8) by 2 and integrate the sum of the result-
wheren, is the index of refraction associated with theh  ing equations over the transverse space to get the integral
wave andc the speed of light in vacuum. The scalars
X=X (w,) denote the Fourier components at frequency N=|w|5+4[v]|5=N,+4N,, (9)

w, of the jth order susceptibility tensofl17]. Thus,
}?12):32&2) represents the quadratic nonlinearify’? the ~ which remains preserved along tzeaxis. For notational
part of the cubic nonlinearity that is responsible for the self-convenience, we have made use of the stant8rdorms
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1/p
Iil={ [ 11Par, |

Besides, we multiply Egs(l) and (2) by wi andv} and

select the real part of the sum of the space-integrated results

to obtain the conserved Hamiltonian:
H=(IF w3+ ¥ 0lB)+ Blol3-Re [ wio)ar,

A
=5 Iwliz=3 lolla=pllowl?. (10

3557
721(2)=8(1% w3 +I¥ %) 20| Re [ (weu)ar,

Ao+ 2plwo ] 14

which can also be written, using the definiti¢h0), in the
alternative forms

#21(z2)=8(H—pB|lv||3)+2(4—D)Re f (W2u*)dF,

+(4=2D)(Iwl4+ Noll3+2pwoll3), (15

We now derive a so-called virial relation in the form ©f, equivalently,

321(z)=F(z) for localized solutions to Eqs(1) and (2).

Defined up to a normalization factd\, 1(z) corresponds to
the mean square radius associated with both coupled waves,

namely,
1(2) =7 W[5+ 47 v[3=1u(2) +41,(2).

We decompose the calculations into two steps:
(i) We first multiply Eq.(1) by (r2w*) and Eq.(2) by

(2r2vp*) and sum up the imaginary part of the space-

integrated results to get
az|(z)=4|mfn.(w*vlw+2v*vlv)drl. (11

(i) Then we multiply Eq.(1) by (r1~V_)lW*) and inte-

grate the real part of the result to obtain after a few integra-

tions by parts:
a,lm f(r}ﬁw)w*dn
= 2%, wl3 5 Iwli—Dplwol
+Refw2r1-v1v*dr1
—p [ 1ol ¥, IwPar, 12

Next, repeating the same procedure on &g we multi-

>

ply the latter by €, -V, v*) to find
2§Z|mJ(FL-€Lv)U*de
- D AD
=2, 0l 5 Re [ (w2or)dr, — 5 Jol

—ReJWZ(FLVlv*)dFLerJ' lv|2F, -V, |w|%dF, .
(13)

Combining Eqs(12) and(13) into thez derivative of Eq.
(17) finally yields the virial identity

921(2)=2(4—D)(||V w|3+]|V v[3)+2D(H—Blv[3)
—D(|wlz+ v+ 2p[wo3)

=4(2—-D)(|V, w3+ V, v|3)+4D(H—B|v|3)

+2D Ref (W2p*)dr, . (16)

From expressiofil5), we recognize the typical functional
(H—pB|v|3) and the coefficient4—D) that characterize
waves propagating in a purely® material [8]. We also
notice the dimensional coefficieit—2D) in front of the
nonlinear potentials usually associated with the cubic NLS
equation forw [16], which is easily recovered by setting
v=0in Eq.(1) and by disregarding Ed2).

IV. CRITERIA FOR WAVE COLLAPSES

In what follows, we derive analytical criteria for the ex-
istence or absence of wave collapse for transverse dimension
numbers of physical relevan&=<3. We divide the problem
into three parts and first discuss the simpler cases of media
that have either a purely quadratic nonlinearity or a purely
cubic one, respectively, before going through the more com-
plicated problem for which both kinds of nonlinearities are
present in Eqs(1l) and(2).

A. Absence of collapse in media
with a “pure” ¥ nonlinearity

We first prove the absence of collapse for trapped waves
propagating in a purely quadratic medium. Some arguments
displaying this property were already given[B)]. Here, we
establish a rigorous proof that thé? nonlinearities alone
cannot promote a collapder any initial data To this aim,
we omit the cubic contributions in Eq§l) and (2) and we
bound from below the resulting virial relatiofi6) as fol-
lows:

921(2)=2(4—D)(||V wW|3+]|V v[3)+2D(H—- Blv[|3)

(4-D)
2

=

IV, Wl[3+ 4|V, v|2)+2D(H-Bllv]3).

17

Then, using the well-known inequalitgee, e.g.[16])
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4 will never vanish for a given nonzelc? norm, whereas the
lgllz= D2 IV gl3lF.gll2 (18 reciprocal implication is not true in general.
On the contrary, as will be seen below, proving that a
collapse occurs in the standard NLS sehs®—0 asz—z,
will imply by itself the simultaneous vanishing of the virial
components,,(z) andl,(z), leading to the blow up of both
4 . . gradient norms at the maximum propagation distancey
(Ny+4N,)%< o2 (V. wl3+4|V. v|DI(z), (19 virtue of the inequality(18) applied to both wavew andv,
separately. Even if collapse should take place at a distance
shorter tharg., one can still expect in this situation that the
divergence of one given solution would cause the divergence
2ab<qa?+b%q (g>0) (20) of the other one through_their mutual nonl?near coupling, in
such a way that the ultimate collapse distance should be

with g=1 to the cross-product of the expressionidentical for the two wave components.

(IV w27 Wi+ 4V o7, v]12)2. Inserting Eq(19) into . (@)
Eq. (17), we get B. Collapse in media with a “pure” x nonlinearity

applied to anyLintegrable functiong, we construct the
estimate

which simply results from employing the obvious inequality

Investigating now the purely cubic case, we omit ji2
(4—D) D*N? c ,p)  contributions; ie., we sav*v=w?/2=0 for the nonlinear
8 [(z) +e (21) terms of Eqs(1) and(2). The present investigation is made
in view of enlightening the coming more complicated
where C denotes the constanti) C=2D(H—8N/4) if  x'?—x® problem; details exclusively attached to a purely
B>0; (ii) C=2DH if p=0. cubic medium are planned to be presented in a forthcoming
Let us now suppose that a collapse may occur at a givepublication[23]. For a purey® nonlinearity, we can first
distancez., in the usual sens€z) —0 asz—z;, similarlyto ~ notice that the individual powerkl, and N, are separate
the singular solutions of the NLS equatifb6]. Then, nec- constants of motior(see, e.g.[22]), unlike the combined
essarily,| (z) must decrease from a certain distamgauntii  x?—x® problem for which only the total power
vanishing atz.>z,. Therefore, we integrate Eq21) from  N=N,,+4N, is conserved. Furthermore, the mismatch pa-
Zo=<z after multiplying it by d,l (z)<0 and obtain rameterB simply reduces to zero in that case; in this respect,
any linear term such as thj8 contribution could easily be
B , 4-D removed by a simple phase transformationsve™ '#%2,
E(2)=[,1(2)]"+ ——D"N"In 2 2C1(z)=<E(2o) When taking all these properties into account, the Hamil-
tonian integral(10) reduces to

8§I(z)>

<+ oo, (22

- - 1
SinceE(zo) is finite, Eq.(22) shows that the imit(z)—0is ~ HC =UVwWlZ+IV.vl5) =5 Iwla=3 lvla=—plowl?,
impossible forD <3, which proves that in media with qua- (23
dratic nonlinearities, a wave collapse cannot occur. However
valid the initial data(incident wavesmay be, this proof is a and the virial identity(15) becomes
eneralization, and thus an improvement, of the analysis per-

formed in Ret 8], P YSISPEE 721(2)=8H™ + (4— 2D) (| +No[3+ 2plwo ).

From the previous result, we conclude that the total mean (24)
square radius attached to the two wave$(z)
=1,(2) +4l,(2), wherel,(z) andl,(z) are both positive,
will never tend to zero. Note that, strictly speaking, this We demonstrate that the energy integkf® can be
propertyl (z) -+0 does not prevent one of the two virial com- bounded from below for low transverse dimension numbers,
ponents),(z) or1,(z), from vanishing while the other com- in order to show the global existence of the solutianand
ponent could possibly keep a finite nonzero value. As a cone in the caseD=1. For this purpose, we first recall the
sequence, this would imply the gradient norm associate@obolev inequality
with the vanishing virial component to blow upr to di- .
verge as z—z., by virtue of the inequality(18). Even [flla=<CV D)5~ P (25)
though such a situation where only one wave component
blows up with a diverging gradient norm might lead to seri-valid for any L integrable functionf with C;=const. Ap-
ous inconsistencies in, e.g., the conservation of the HamilPlied to the solutions, v in the 2D casgD =2), one has
tonian integral, it is not forbiddem priori. In this sense, Cw=2/N., andC,=2/N., where the best constank5y'
proving the absence of collapse from the nonvanishing of thend Ngﬁf‘ optimizing Eq.(25) can be determined from the
virial integral 1 (z) constitutes a weaker result than proving NLS ground-state equatid24]. Both these values are iden-
that the gradient norms remain bounded from above, as iscally equal to the critical thresholdN, for a 2D self-
well known in the simpler context of the NLS equatidi6].  focusing. Computed from the radially symmetric ground
In view of the inequalitie$18) and(19), the boundedness of state of the cubic NLS\, has the precise valud.=11.68.
gradient norms, from which the global existence of solutions=urthermore, we need the Schwarz inequality, together with
follows, indeed assures that the corresponding virial integral&q. (20) defined forg=1, to estimate

1. Absence of collapse for B1
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Iwo [5<[IwilZllvllZ= 2 (Iwlz+[lv]|D). (26) Investigating the opposite case of a repulsive potential
with p<<0 for D=2, we can use the virial relatiof24) again
Applying Egs.(25) and(26) to the integraH® enables us to  and bound it from above:
bound the latter as follows: 5 3 4 4
9;1(2)<8H®+(4-2D)[(p+ 1)|w[z+ (p+N)llv]2],
3 v v
H® =V w2 [V.v]2) by means of the inequalitie®6) and (1-D/2)p=0. From
. w P this, we conclude that collapse can still occur for a negative
E”VLWHg( 1-ew— NZ-P 2||VLW||2DZ> coupling constantp under the requirement28), provided
that this parameter belongs to the narrow range of values:
- Cc PR B max{—\,—1}<p<0.
+||V¢v||§( 1-¢, 7v N3PV o]lf 2), (27) Besides, at the critical dimensidh=2, when using Egs.
(25) and(26) the quantityH® is found to satisfy for positive
where (i) e,=(p+1) if p>0 or ¢,=1 if p<0, (i) coupling parameters:
e,=max{p+\,p} if p>0 or ,=max{\,0} if p<0 [taking the N
maximum value among the two previous ones dependsH(3)>||V1W||§{1_(p+ 1) N_W
whether\ is positive or negative c c
Whatever the parametefg,\) may be, the constants, (29

and ¢, are non-negative. From the estimati@v), we de- so that the sufficient conditio(28) implies that one among

duce thatF is bounded in the pland|VLWH21HVJ(3U”2) for  the two following constraints must at least be satisfied:

+[V 0]}

N,
1-(p+N) N_}

subcritical dimension® <2. So, the functionaH®=F re-
mains bounded in turn from below f@r<2, which indicates e c e N¢
that in this case, fixed-point solutions, such as soliton-type ~ Nw>Nw= (p+1) and/or N,>N,= (PN (30)

structures, can be stable if they realize the minimum of the
Hamiltonian(see the next section for a detailed discussion ofPromoted by incident waves obeying the requirem@a},
soliton stability in the context of the fuf®—x® problem).  collapse may therefore take place for a total poneex-
In addition, recalling that a collapse characterized byceeding the critical valud/:

[(z)=1,(2)+4l,(z)—0 implies the divergence of the gra-
dient norms|V,w||2 and |V, v|3, in accordance with the
inequality (19), we easily see from Eq27) that such a col-

i i () . .
lapse can never occur f@ <2, since the finiteness &1, gpective boundsl, andN ¢ prevents the collapse in the NLS
which is a constant of motion, implies that the two gradientsense, as the gradient norms of the fundamental and second-
norms must remain bounded in that case. In connection With 5 monic waves remain bounded by the finite quartity
this result, the nonvanishing 6{z) can easily be recovered i, gq (29). This situation only applies wher® satisfies the
by applying the ymal |_ntegrat|on technique detallec_i in _Sec'condition opposite to E¢28), namely,H(3>>o_ Reexpress-
IV A. We now investigate the complementary S|tuat|onsing once more the boun@9) in terms of the total poweN,
D=2. it is sufficient to ensure

N>AN.=N./(p+1)+4N;/(p+\).

Conversely, assuming th&t, andN, arebelowtheir re-

2. Occurrence of collapse for B2 Ne 4N,

p+1' p+A

We first study the most natural configuration for having N<Now=mMmin

collapse, namely, the one corresponding to attractive poten-

tials with positive coupling constantonlinearity coeffi- for preventing the collapse. An alternative way to prove that
cienty \,p>0. From the virial identity(24), it merely fol-  collapse does not occur in the two-dimensional case for low-
lows that collapse must occur f@=2 under thesufficient —power waves is to rewrite the virial relati¢f4) in the form
condition

21(2)=8{[|IV W[5 1~ (p+1)Ny,/Nc]
H® <0, (29) i
+IV ol2[1= (p+ NN, /NCT}
Once this condition is fulfilled, both waves blow up at a . .
maximum propagation distance. since the vanishing of =2(1—N/No)[|IV . W[5+ 4|V, v]3].
[(z) implies the simultaneous vanishing of the individual
mean square radiug,(z) andl,(z). As previously recalled, We then employ the inequality19) and reason as in Sec.
even if collapse takes place at a shorter distance, the divelV A to conclude that no collapse happens in this case.
gence of one given solution should force the divergence oPriginally established for positive coupling constaptand
the other one through their mutual coupling, so that the col, this result can be extended to the cased by repeating
lapse distance should be the same for both wave compdhe former reasoning on the virial identity now bounded as
nents. Note that foD>2, the functionalF is unbounded follows:
from below withe,=p+1 ande,=p+X\, which may indicate - -
the presence of collapg@vith the restriction, however, that F1(2) =4[ 2(|V w5+ Vol — w3+ Nlv D]

an unboundedF does not necessarily imply an unbounded = s I
Hamiltonian). =2(1-N/a)[[|V, w[3+ 4]V, v|3]
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for N<a=min{N,4N/\}, after using the Sobolev inequality Re f(w?*)dF, , with a positive quantity which counteracts
(25). This absence of collapse thus concerns larger powerge requiremens 2l (z) <0 for collapse.
than in the preceding situation. Far0, the same kind of  We finally mention that criteria for wave collapse, sharper
treatment can be applied by ignoring th&norm ofv inthe  than Eq.(34), might be found after combining the inequali-
previous estimate, so that the constraint on the partial powetses (25) and (32) following the steps of the analysis per-
only concernsN,, . formed in[25] in the context of the NLS equation. However,
We can finally observe that, in the so-called one-fieldestablishing these criteria would require one to determine the
limit v —0 when we disregard Eq2), the NLS necessary pest constant€2*tandC"*corresponding to Eq25) in the

conditionN,,> N for a critical collapse is directly recovered 3p case, which is beyond the scope of the present paper.
from the estimate$29) and (30), since p vanishes in this

limit, as this coupling constant makes sense as long as the 2. The critical case D=2
second harmonic wave has nontrivial values only. In this
respect, it can be noticed that the choeel, in the basic
inequality (20) used to get(26), allowed us to derive the
sharpest estimaté80) that restore the NLS critical threshold
whenv —0 in Eq.(1). This NLS critical poweiN $,— N. can
also be refound by repeating the above procedure, starting 921(z)=8(H—Blv|3)+4 Ref (w2*)df,, (35
back to the key estimate ER6), which simply vanishes in
the case =0. where the conditionHl — B|v| 3) <0 is not sufficient to as-
For the sake of clarity, we henceforth focus our attentionsyre a blow up and where the potential contribution related
on the most salient choice of the coupling parameters progp the y? nonlinearity could even be thought to act as inhib-
moting the collapse, i.e., from now on, the constan&dX iting the collapse. Even when employing all the inequalities

Proving the existence of collapsing solutions in the 2D
case is not straightforward. Indeed, 92, the virial rela-
tion (15) reduces to

are supposed to be always positive. expounded so far, we are not able to bound efficiently this
contribution in order to conclude rigorously on the existence
C. Competing between they® and x'® nonlinearities of collapse. Instead, we can argue as follows by using the

Returning to the complete equation 4} and (2), we alternative virial formulatior(16):

investigate the dimensional casBs=3 and D=2, succes- 20 () — 2 3
sively,g:‘or arbitrary values of the mismatch parameger 771 (2)=4(H = Blollz) + 4H, (36)
N whereH® is still defined by Eq(23). In view of Eq.(36), a
1. The supercritical case B=3 sufficient condition for promoting the collapse should consist
We first make use of the inequalit0) with q=1/2 on in the conjugation of the two constraints:

the integral contribution 3
(a) H®<0, (b) H—pN,<0,

Ref (W2 *)df, <|w|2|vll,<|wll4+%[v]3, (31)  assuringdZl(z)<O if they were satisfied for evers. Using
the estimation29), we easily deduce that conditiqa) im-
plies that one of the two inequaliti€80), i.e., N,(z2) >N,
N,(z)>N¢, should be at least verified. For initial data yield-
ing Ref(w?*)df, (z=0)>0, condition (a) also implies, at

in order to bound the virial identityl5) as follows:

#21(z)<8|H—| B+ (D164)) lvll3|+4(3—D)|lw|3 least initially, that (b) is systematically satisfied, which
surely promotes self-focusing in the early stages of the wave
+2(2-D)(M[v|4+2p|wo|2), (32  evolution. The problem raised in the present context is that
neitherH®)(z) nor N,(z) are constants of motion, in such a
which leads in the three-dimensional cdze 3 to way that we can only expect that the self-focusing process
will be favored for initial data with sufficiently high powers.
921(z2)<8[H—(B—&)llv]3]. (33  Those are optimized witN,,(0)>Ny, andN,(0)>N¢, that

is, N>A,, as in a purely cubic medium. The condition
A sufficient condition for the collapse to occur is then simply N>A/; thus appears to be aptimal (or * by-excess) con-

dition for self-focusing iny®—x® media, for which it can

H—(B8—3)N,<0. (349  be viewed as an upper limit of the collapse threshold. This

suggests that, as the quadratic nonlinearities tend to counter-
In terms of the conserved quantitisisandH, this condition  act the natural wave dispersion by forming solitons, they
is always ensured whenevét and N satisfy: (i) H<O0 if  should not efficiently arrest the collapse induced by the cubic
B=1/16; (i) H<(B—1/16)N/4 if B<1/16. Condition(i) re-  nonlinearities, whose localizing effects reinforce the qua-
sembles the sufficient standard condition for collap$e0,  dratic ones. We will later show that, defined under the mass
in the purey'® problem. ForB<1/16, condition(ii) is more  assumption$30), the Hamiltonian appears to be unbounded
restrictive than the latter one and, in particular B0, it  from below, from which the possibility of realizing a col-
appears to be more severe here than in the ptfecase. lapse with the same constraints as in a pupgf medium
This can be explained by the stabilizing effects induced byfollows (see Sec. V A We will, moreover, confirm the de-
the ¥? nonlinearities that contribute to the virial relation velopment of collapse under those conditions by means of a
(15, through the quadratically nonlinear potential variational method elaborated in Sec. VI and numerical
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simulations presented in Sec. VII. In this respect, it is impor- Niow=min{NS, 4N} (40)

tant to note that the above conditidi™ A/, possiblyassures

a collapse dynamics for close to zero only. It does not

necessarily mean that the conditiot® and (b) ensuring  denotes the same quantity as the one introduced in Sec. IV B.

931(2)<0 will be fulfilled for everyz (even atz=0), which  The reasoning then ends by concluding as in this subsection.

will justify why this “upper” limit N>N; may sometimes This argument shows that, in the critical cd¥e 2, choosing

be exceeded for some ranges of coupling paramé¢ses, incident waves with sufficiently small amplitudes ensuring

e.g., Fig. 2a)]. N<A,, in a way analogous to the pugé® problem, pre-
Furthermore, let us suppose that,priori, the require- vents the collapse in the presence of bgtf and x® non-

mentsH®<0 andN>\/; are always fulfilled. Then, the con- linearities.

dition (b) will be verified whenever the invariantd and N Keeping in mind that, with an interplay of both kinds of
satisfy nonlinearities, the individual powefs$,, andN, are not con-
) served separately, we summarize the different regimes of
(i) H<O0 for g=0, propagation for the coupled waves as follows:
i (i) For low powersN<A\y,=min{N,4N°}, no collapse
(i) H<BN/4 for B<O, develops. In this case, the virial integrgz), which is a

measure of the total mean square radius associated with the
Soupled waves, satisfies| (z) >0, so that waves originating
from steady-statfy,| (0)=0] incident data simply spread out
with 1(z) — -+ asz—+oo,

(i) For medium-sized powers lying in the intermediate

which indicates that the collapse dynamics, and thereby th
power threshold for self-focusing, can change according t
the value and sign of the mismatch parametein particu-

lar, for the initial data under investigation, it will be more

difficult to getH <0 for a strictly positiveg, than for a zero range of valuesN,,,, <N<AN =N +4N¢, we cannot con-
one, because of the contributianSN, in H. Consequently, ¢,4e apout the fate of the trapped waves. In this “hybrid”
the influence of the m|s_match parameter may Iea}d to an INragime, coupled waves, whose individual powiigsandN
crease of the self-focusing threshold when regarding positivgsmain below their respective critical valudg(z) <N, and
values ofg, which can alter the basic estimate>A; N,(z)<N; for everyz, will surely not collapse at a finite
On the other hand, we are stil at_)le to show th_at no COI'propagation distance. Inversely, self-focusing cannot be ex-
lapse develops fdD =2 when the partial powers salisfy con- ¢, qeqa priori when the partial norms of the waves satisfy

ditions opposite to Eq(30). Indeed, let us bound the virial initially one of the two conditions: N,,(0)>N¢ or
identity (16) as follows: N, (0)>NC. W W

N (iii ) For high powerN> A/, collapse of both waves may
||V1W||§( 1-(p+1) _‘”) occur under the requiremehit<0 for 8=0, or H<BN/4 for
N B<0. Even though we did not establish rigorous criteria for
this occurrence of collapse, we can expect that waves evolv-
+C (37) ing in the presence of bot{f? and y*® nonlinearities should
logically self-focus under the same requirements as in a
purely cubic medium, i.e., witkl®<0, leading to the opti-
mal conditionN>A/;. From the possible unboundedness of
the Hamiltonian, this condition, implying that at least one of
the two waves possesses a poakoveits associated thresh-
old for self-focusing, can be related to unstable structures. It
(39) must be recalled, however, that the expectation of collapse
under the constrairfi>\/, may be revised according to the
are a priori always satisfied, then we can define V&lue and sign of the mismaich paramegerOriginally, it -
a,=min{NS/N,, ,NS/N,}>1 to find follows (fg)om a direct comparison with waves evolving in
purely x** media for which the mismatch parameter is zero,
&gl(Z)Z(l—1/ap)(||VlW||§+4||€Lv||§)+C (39) so that the former predictions should mainly be relevant for
values of3 close to zero.

and conclude as in Sec. IV A thb{z) can never reach zero
in that case. Strictly speaking, we have rather to reason in
terms of the total initial datunN=N,,(0)+4N,(0): due to V. SOLITON-TYPE SOLUTIONS

the ® contribution, the partial powens,(2) andN,(2) are We here investigate the stationaisolitonlike) solutions
not individually conserved along and, for instance, one of ¢ e combinedy®— @ Egs. (1) and (2). These solutions
them may increase above its respective critical value for colp5ye the form

lapse defined by Eq(38), when both are below initially.

Therefore, the estimat@9) must be bounded once more to

read w(r, ,2)=ws(F )expiQz), v(f, ,z)=vf )exp2iQz),
(41)

21(2)=4

I N,
HIV ol 1= o0
Cc
by using the Sobolev inequalify25) together with Eq(26).
Here, C is equal to the constant defined in Sec. IVA. It is

now clear that if the constraints on the partial powers

Nw(2)<NS=N./(p+1), N,(2)<NS=N./(p+N\)

921(2)= (1= NI/ Niow) (| V , w|3+ 4|V, v|2)+C,

where the constant wherewg anduv ¢ obey the differential equations
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—Qw+ V*fWSJrW:vSJr IWe|2Wet plug2we=0, (42) solitonlike solu_tions,_ we employ the following L_yapunov
procedure starting with the functionel=H + QN. It is well
=2 1.2 2 2 established that, in the framework of NLS-type equations,
~(B+AQ)vs+ Vivet zWst Moy vt plwsl"0s=0. this functional constitutes an appropriate Lyapunov function,
(43 " oo A .
up to some additional constant contributions making it posi-
In the following, we assume the existence of nontrivial solu-tive [26]. By solving the variational problerdL =0, one can
tions wg,vs#0 and therefore deal with so-called-type  easily see that, also in the present contexappears to be a
(combined solitons, by contrast with the so-called or  good candidate for analyzing soliton stability, because
W-type solitons investigated in their respective limits—0  steady-state solutions to Eq42) and (43) realize an extre-
or vs—0 in Ref.[18]. We suppose priori a real positive mum forL. Following Lyapunov’s theorem, proving that this
eigenvalug) satisfying the requiremef@=max0,—g/4} to  extremum consists of a strict minimum should be sufficient
assurelocalizedsoliton-type solutiongbright soliton. We  for showing the stability of these stationary solutions. To this
first search for characteristic integral relations satisfiedvpy aim, we will decompose the analysis into two steps. First, we

and vg: we multiply Egs.(42) and (43) by wi andvi,  will demonstrate that, for low dimension numbers, the func-
respectively, and sum up the real part of the space-integratefbnal L is bounded from below by a function that exhibits a
results to find strict minimum, in such a way that surely admits in turn at

. . least one minimum. Second, we shall solve the variational
ONg=—(|V, wd2+[|V, vd|?) — Bllvd|2 problem 5L =0 under the constraint of fixeM, in order to

identify one minimum of the Lyapunov function and to re-
cover under this constraint that this minimum is reached on
the soliton solutions of Eqg42) and (43).
(44) Before proceeding, we emphasize that, instead of working
with the former functiorL, it is more convenient to use the
with Ne=||wd|3+4]v4|3. Next, we multiply Eqs(42) and  functionalS=H— SN, . Indeed, in view of.the above proce-
(43) by (7, -V,w*) and §, - V,v*), respectively, and inte- dure based on the search for bounded integrals and on the
LS Lo LTS h AN gonstraint of a fixed norN, making use ofs rather tharL
grate the real part of the summed-up resulting equations over e ) N~
space to get amounts to obtaining ana_logous results, since finding a
bound from below foIS provides a bound from below fdr
2 _ R (these two functions satisfy=S for localized ground states
5—1)(||VLWS||§+||Vivs||§)—,3||vs||§ defined in the eigenvalue domafd=max0,~B/4}). More-
over, working at fixedN, it can be checked that the estimates
1 inferred fromL overlap the ones found frof@. In this con-
+Re J (W2o¥)dF, + > (Iwgl3+Nlvda text, it is thus sufficient to us=H — 8N, , instead olL=H
+QN, in order to avoid any redundant treatment when deal-
+ 2P||sts||§)- (45) ing with different values of the mismatch paramegetet us
notice that reasoning with a fixed implies that both of the
Subtracting then Eq45) from Eq.(44), we obtain the char- partial normsN,, andN, are finite in turn, so that the con-
acteristic relation tribution B|lv |3 does not here play any crucial role. The func-
tional S is always bounded byH— 8N/4) for >0 and by
H, simply, in the opposite casg<0. Compared with the
former functionalL, only the absolute value of the minimum
is displaced whei® is chosen as a Lyapunov function. From
(46) these arguments, we easily understand that the most impor-
tant integral to be evaluated in the present approach is the
Hamiltonian: the soliton solutions are then localized station-
which we employ in order to evaluate the Hamiltonid®  ary points of the Hamiltoniati in the variety of functions

3
+ 5 Re [ (w2ub)dr, +wl+ Mo+ 2plweo.l3

QON=

Re | (w22, + w2+ M+ 2ol

4 -
=5 IV w5+, vdl3).

on the ground-state solutiong andv: with a constant norni.
) To resolve the first point of the above-summarized proce-
> S dure, we employ the inequalit
Ho=g (IV. w3+ V.04l - ONg, (47) pioy auatly

Similarly, we can compute the virial identity on the two- .
component ground statev(,v). Using Egs.(14) and (46), ReJ (W20*)d7, <[ wlZlvll.<VCuNi PV, w3l
we find the obvious relatio@ 4l (z)=0, indicating that the
mean square radius associated with the steady-state funda-
mental and second harmonic waves remains unchanged C
alongz. <2 IS D2
, , <5 [V.iwlz"™, (48)
The trapped waves, able to converge to the fixed-point 2
solutions of Egs(1) and (2), are expected to tend towards
such a two-component asymptotic behavior fulfilling
221(2)=0. To investigate the stability of these stationarywith C=/C,N*?"P" and obtain the estimate
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addition, this minimum is reached on the solutions satisfying

D2 9S,/dal,—,=0, i.e., for states verifying the relation

C, -
15 ¥, wiS

H—Bllo[3=[V, w3

=S N O w2 ol alfi=400D, 52
2 w

which is just the relatioig46) satisfied by the two-component
soliton-solution (g,vs). Consequently, under the constraint
of fixed normN, the minimum ofH, as well as the one of the

(49) Lyapunov functional$ andL, is reached on this two-soliton

family, as expected.

From expressiori49), it can be seen th&=H— g|jv||3 not The previous arguments enable us to predict that mutually
only remains bounded from below, but also admits a globafrapped solitons are stable provided that the space dimension
minimum for D<2 always. In the critical cas®=2, the IS equal to unity, which thereby provides an analytical con-
functionalSis also bounded provided that the partial massedirmation of the stability of the 10C-type solitons recently
satisfy N,,<N¢/(p+1) and N,<N./(p+\), separately, that observed by Trillo and co—'worke[$8,2q in numenpal com-

is, for N<A/. . In those cases, the right-hand side of Etg) ~ Putations. Moreover, solitons may be stable in the two-

- - - = . dimensional case, provided that the powers in the incident
is bounded parabolically as a function|6f, v |, whereas it waves be below their self-focusing thresholds. Note that the

exhibits a local minimum as a function §¥, w|,. In the  resent analysis supposesriori that such localized struc-
opposite case, when the requiremef®8) are fulfilled, i.e., ;s exist and are unique for a given class of parameters
for a total massN>A\/;, S cannot be bounded from below () g o). It neither proves their existen¢aumerical obser-
and the mutually trapped \:\é()’;lves may collapse under the samgyions of 2D solitons will be presented in a forthcoming
conditions as in a purely™ medium. ForD=3, Eq.(49  haner[27]) nor specifies the initial conditions under which
can never pe bounded f.rom. below, which possibly |nd|cate§hey can arise. In fact, the previous conclusions apply to
the instability of any solitonlike structures. _ stationarynonlinear states created from incident waves that
~We now resolve the second point of this analysis: we,re syfficiently “massive” to generate an attractor able to
identify one minimum of the functiona® together with the ¢,y solitary waves without promoting their collapse. To
fixed-point solutions expected to be stable. First of all, wejysirate this point, we briefly recall the case of NLS soli-
remark that the stationary solutions of E¢¥). and (2) pos- tons, obtained from Eqg1) and (2) by settings =0 in Eq.
Sess, gt_ fixedN, the lowest energy level a}nq must thug reaIize(l) and ignoring the second equation forlt is well known
the minimum ofH, or, equivalently, a minimum 0. Since 5t NLS solitons correspond to “linked” states for which
these stationary solutions are assumed to be localized in thfe  Hamiltonian H.,=[(D—2)/(4—D)]QN, is negative
transverse plane, they should logically correspond to thsee for instancd16]). In the caseD =1, solitons exhibit a
above-definedC-type solitons. Let us prove this claim by gach shape and are stable in the sense that any initial datum,
using the property following whicN is fixed and remains  cqrresponding to a negative-energy state, asymptotically
invariant under the scaling transformation gives rise to a finite set of sech-shaped solitons by evacuat-
R . ing, if necessary, the excess mass through a radiative tail. In
W(F, ,2)= %ﬁ W(r_i’z), o(F,,2)= WU(E,Z , a certain sense, formation of_stab!e soliton_s is pe_rmitf[ed, be-
a a a a cause the collapse process is strictly forbidden in this case.
(50 For comparison, solitonlike structures of the 2D NLS equa-
tion, which correspond to a zero-energy stete=0, cannot
and employ the parametaras a Lagrange multiplier fai.  naturally emerge with a stable shape from a wide class of
This Scaling factom must be identical for the two waves in |n|t|a| data' because the Vahjészo Constitutes a margina'
order to ensure the conservation of the total poMeras  poundary between a continuous wave spreading, ensured for
resulting from the continuity relation&) and (8). Introduc-  positive-energy states, and a finite-distance blow-up, ensured

c b b~
1= = (HpING P2V 0f372).

+[V vl

ing Eq.(50) into S transforms it into for negative-energy states. In this situation, the collapse pro-
2 3 cess is permitted. A similar argument enaples us to e'xplain
s 6 a? a” (51) the formation of two-component solitons in media with a
2" a2 aP2 2P pure x? nonlinearity for any dimensio®<3: as a wave
collapse is impossible to realize in such media and because
with the notations steady-state solitary waves are stable, the latter may be

formed from a wide range of negative-energy initial da&h

o - _ Thus, generalizing the previous arguments to the interplay
5=V W[5+[V 73, CY(Z):RGJ (W2*)dF, of @ and x® nonlinearities, we emphasize that the possi-
bility of realizing 2D stable solitonlike structures will depend
on the sign ofH,, defined by Eq(47), and on the values of
the individual powergwg| 3 and|v4|3. If Hs is negative, or
.. N, far above the critical threshold/, for collapse, no stable
where V| =V; ,,. From the expressiofbl), one deduces 2p solitons should be produced because the intévyal\,
that S admits a minimum foD <2 (given by the minimum overlaps the one associated with solutions which are ex-
of H at fixedN), in accordance with the previous analysis. In pected to blow up in this range. In the opposite didse N,

a®) = W3+ N34+ 20|,
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the creation of two-component solitons is not forbidden power (9) implies A(z)=B(z), and thusa(z)=b(z). So,

priori. However, clearing up this question requires one tofrom now on, the rescaled variablés and &, reduce to the
identify the localized solutions to the set of differential equa-_; G . ;
tions (42) and(43) for a given eigenvalu€), and to compute silngle one:z=r, /a(z) (we will thereby adopt the notation

the energy and power integrals attached to these solution¥,= V- In summary, choosing to model the two coupled

which is beyond the scope of the present paper. waves by
1 . . aa
VI. A VARIATIONAL APPROACH w(r, ,z)= a2 °? Rw(f,Z)eXL{i Ou(&,2)+i 52},
A. Trial functions describing the coupled waves (56)
In this section, we follow the dynamicdk-dependent 1 . . aa
behaviors of localized solutionsv(v) using a variational v(f, ,2)= [a(2)]"" Rv(g,z)ex;{iav(g,z)ﬁ > 52},
approach based on self-similar-like substitutions of the form (57)
. _ r ensures preserving the original structure of the continuity
w(r,,z)= A a2 relations whose transformed versiof&)) and (55) indeed
simplify into
o(FL )= V(f_gz), 53 [a(2)]20,/W|2=—2V - (|W[?V 6,,)
B(z) \b(2)

—2[a(2)>”PAm[(W*)?V],  (58)
wherea(z) andb(z) denote the typicat-dependent radius ) 5 - 9
of w anduv, respectively. In order to identify the real inten- 2[a(2)]°9,|V|"=—2V-(|V|*V 4,)
sity factorsA~(z) andB~!(z) and the phases a% andV, n 2-DI2m[ (W* )2V 59
we insert the solution&s3) into the continuity equation&’) [a(2)] MLWHV]. (59
and(8) and obtain Further, we need to make a suitable choice for the func-
tions R, ,R, ,0y,0,). As itis clear that we cannot find ana-
lytically their exact spatial dependences, we postulate that a
proper approximation is that the amplitude functiétsand
R, are exactly self-similar, in the sense that both of them do

not explicitly depend orz and therefore reduce &N(E) and

2
22

Aa. N
(0z—x—gfa-Va>lvv|2=—a Vo (WY, argw)]

2
- —=Im[((W")?V], (54

VB Rv(é), as is usually assumed in the context of the cubic NLS
. equation[28—30. Under this self-similarity condition, the
B b. . 5 2 . 9 derivative of the continuity relation®8) and(59) is zero, so
2| 9755 €0 Vb [V|*=— o2 Vb [IVI*Vy arg V)] that the most natural choice consistent with the vanishing of
the right-hand sides of these equations is to impose profile
JB test functions withé,,= 6,=0. Additional phase contribu-

+t Im[(W*)?V], (55  tions in the z-dependent formsd,(z)=6,(z)/2 could be
checked not to alter the coming results. Note that with this
self-similar prescription, the partial powel§, and N, re-

- main constant along.

andé,=r, /b(z). Here, the dot notation means a differentia-  Finally, for modeling the amplitude®,, andR, , we first
tion with respect ta. Let us first discuss the self-consistency refer to the recent work31] where Gaussian functions were
of the above mass continuity relations with respect to theshown to approach 1D and 2D trapped solitong'fh media
transformation$53). By “self-consistency,” it is meant that with a great accuracy. On the other hand, we recall that
the original conservation laws must remain formally un-Gaussian trial functions of the form e(xp§2/2) are reason-
changed, and therefore be covariant, through these transfosbly good approximations of sech-soliton solutions to the 1D
mations. First, in order to recover a covariant form of thesecubic NLS equation. Furthermore, dynamical solutions con-
conservation equations, the respective phase®/aindV  structed with Gaussians of the same form restore the collaps-

where we have defineﬁ{a,b}zveg{a’b) with Eazﬂla(z)

have to expand as follows: ing behaviors of singular solutions to the cubic 2D NLS
R . equation(see, e.g.[29] and[30]). In this case, the critical

arg W) = 6,(&,,2) + a(2)| &), massN.=11.68 for a 2D self-focusing is approximated by

N =4 when the true NLS solution is forced with a Gauss-
argV) = 6,(&p.2)+ B(2)| &2 ian distribution like exp—&42). In light of this, we therefore

_ ) apply the following test functions for the coupled waves:
with «(z) =aa/4 andB(z) =bb/2, which, in addition, allows
us to determineA(z)=[a(z)]® and B(z)=[b(2)]° up to
some constant factors that can be set equal to unity without
loss of generality. Second, keeping the previous results in 5
mind, one then deduces that the exact canceling between the R,(&)=Po exd — f_
x'? nonlinear contributions required for restoring the total w w 2)

wW(F, ,Z)=[a(2)]D’2RW(§)exp<i i—a 52),

(60)
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o(f ,z):[a<z>]—D’ZRv<§)exp(i = §2>,

(61)

R &
R,(§)=\P, exp( - E),

where P,, and P, denote some intensity coefficients to be

fixed later on.

B. The dynamical system and related numerical results

We insert the trial solutiong60) and (61) with self-
similar amplitudes into the virial identity14), in order to
derive the equation governing the mean radagg) of the
coupled fundamental and second harmonic wavesnd v,
namely

416 D a'? a®
a= 7|37 7 |agTFort gD (62

with

T=|ER 3+ 4|ER,)13,  o=(|V.R3+|V.R,[2),

o?= [ ReR, 42 a@=|RIAIR I+ 20IRAR,

3565

context and in view of the virial expressiof35) and (36),
we imposea priori this sufficient condition reading for a
nonzerog:

2) 3)

2__ 4 a( a(
H(Z)_B”UH2_[a(Z)]2 [a(z)]Dlz_ 2[a(z)]D 0.
(65

This quantity enters the first integral of motion associated
with the dynamical syster(62):

7 .
G(2)= 7 [a()12+[H(@)~ BN,1=G(0). (66

Beginning with the casB =1, we observe from Eq$63)
and (66) that not only a collapse cannot be realized in that
case with&>0, but also the dynamical syste(82) admits
fixed points corresponding to stable positions attained at the
minima of the functiona(65). These fixed points indicate the
asymptotic formation of one-dimension&l-type solitons
that are stable, following the discussion in Section V. The
wave radius(z), given by the variational analysis, oscillates
with a constant frequency, which represents steady oscilla-
tions around the soliton form. These oscillations mean that if
an excess of mass could have been radiated away, solitons
would have formed.

In the situationD=2, it is clear that, since the integral
contributiona® is positive, the conditiori65) allowing col-

We discuss the dynamical systei®2) for each transverse |apse will surely be fulfilled if 2—a?<0, i.e., wherP,, and
dimension numbeb and introduce the Gaussian test func-p yerify the inequality

tions into the above integrals computed in a radially symmet-

ric geometry. By doing so, we find that the equation govern-

ing the evolution of the radius(z) simplifies for any
dimension numbeb into

4
- P,+4P,

PutP, 2°'PyP,
a3 6D/2al+D/2

A

(P2+NP2+2pP,P,)

ST+DIZ,1+D (63

For comparison, the counterpart of E§3) in the context

of the cubic NLS equation can easily be recovered by disre- . 1
garding the contributions in (v=P,=0). For instance, in
the caseD =2, the dynamical system describing the evolu-

tion of a(z) in the NLS limitv—0 is expressed as

.4
a=—
a3

Ny
47

(64)

Q(Py,P,)=Pu[4=(p+1)Py]+P,[4=(p+\)P,]
+p(PW_ Pv)z
<0, (67)
implying henceP,,>P {=4/(p+1) andP,>PS=4/(p+\)
with p,\>0. These constraints then recover the conditions
(30) andN>A/, for collapse in purely® media, keeping in

mind the relationsN,, ,= 7P,, , andN;=4. In those con-
ditions, the systen(63), rewritten as

_ Q(Py.,P,) 4Pu\P,
P, +4P, a’ 3a® |’

a (68)

shows that, starting from steady-state waves having a nor-
malized radiuga(0)=1, a(0)=0], a collapse at a finite dis-
tance z, will always take place withQ}(P, ,P,)<0. In-
versely, if we now consider the inequality opposite to Eg.
(67), which is satisfied wittP,<P§ andP,<P¢, Eq. (68)

with N,,=|R,||3=7P,,. It predicts the occurrence of a 2D may contain a center-type equilibrium position correspond-

(critical) collapse at a finite propagation distargewith a

ing to the minimum of(65), for intensities rather close to

vanishinga(z). This collapse develops for incident steady- their self-focusing thresholds. This indicates the possible for-

state[a(0)=0] Gaussian beams, whenever the powgrex-

mation of two-dimensionalC-type solitons. For intensity

ceeds the critical thresholtl,=4. In the opposite case values far below the self-focusing thresholds, the waves dis-

N,<N., the wave spreads out with a divergiagz).
In solutions to the two-component systeih) and (2),
collapse is expected to occur in purgl’’ media if the suf-

ficient conditionH®<0 is satisfied by the incident waves

perse witha(z) —+« asz increases, similarly to the dispers-
ing NLS solutions. These behaviors are consistent with the
points (i)—(iii) emphasized at the end of Sec. IV.

Besides, three-dimensional waveforms can be seen to col-

(see Sec. IV B while we cannot definitively conclude on the lapse rapidly wher®,, andP, are sufficiently large to ensure
occurrence of collapse for waves propagating in the presenca0)<0 initially. More precisely, collapse surely occurs
of competing quadratic and cubic nonlinearities. In the lattemwhen the conditiori65), supplemented b, /16= 773’2PU/16
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harmonic waves are strictly forbidden by this approximation

method. Moreover, the present variational analysis assumes

waveforms that remain forced with a Gaussian shape. Con-

sequently, these constraints may hereby introduce some dis-

crepanciegin the collapse distance for instanceompared

with the true numerically integrated solutions to E(s.and

(2). As an example, it can be seen from the relati@d) that

the Hamiltonian—that is a constant of motion—diverges in

the collapse regimea(z) —0 for D=3, when it is approxi-

mated with the self-similar trial solution®0) and (61). In

the present context, the variational approach thus gives ap-

0 02 04 06 08 1 12 14 proximated results that, although restoring the general ten-
z dencies of the coupled waves, must be regarded with caution.

FIG. 1. Evolution of the radius(z) vs z integrated from Eg.
(63) forD=1 andPW= F)UE P=1 (dashed Iln§3 In this case Only, VII. NUMERICAL COMPUTATIONS
thez axis has been rescaled by a factdi0 (zy,e= V10zg;4) to See
clearly the wave radius oscillates around a stable soliton-type fixed- In this section, we present the results issued from numeri-
point solution. Solid lines represent the radag) computed inthe  cal integrations of Eqs(l) and (2) with s=+1, 8=0, and
caseD =2 for the intensity factor®=1.5>P, (lower curvg, yield-  p,A\>0. We use a split-step Fourier method of second order
ing a collapse at a finite propagation distance, #€0.8<P.  in z (see, e.g.[32]), solving the linear and nonlinear parts of
(upper curvg implying a wave spreading. the equations separately. The linear part is solved using Fou-

rier transformations, while the nonlinear part is solved with a

to recover the sufficient requireme®4d), is initially satisfied  fourth-order Runge-Kutta method. The conservation of the
with a(0)=1. In the opposite situation, the waves generallytotal powerN was checked throughout the integration, with a
spread out, like the standard dispersing solutions of the cubielative error of less than 16 for all the results presented.
NLS equation. We can therefore conclude from these ap- Collapsing solutions are investigated using a fixed resolu-
proximated behaviors that no stable soliton should be formetion in all the coordinates. Thereby, two things can happen:
in combined Y —x® materials wherD =3, in agreement (1) If the step size in the direction of propagatiaxg, is too
with the results of Sec. V. This conclusion is also consistentoarse, then the total pow& will not remain conserved
with the property according to which the functioriéb) con-  when the collapse singularity is approached. Because we de-
tains no local minimum in that case. fine the maximum allowable deviatiodN=10"5, this

Typical behaviors of the wave radi@gz) have been il- means that the program will simply have to stop at a certain
lustrated forD =1 andD =2 in Fig. 1, obtained by a numeri- distancez; preceding the true singularity. If we chode
cal integration of the variational equatié®3). We have cho- sufficiently small, so thall would remain conserved without
senp=2 and\=1, so that the critical partial powers have the exceeding the allowable deviation in the absence of collapse,
identical valuesP ;=P S=4/3. For the sake of simplicity, then z, could be expected to be a good measure of the
we have considered waves with equal values for their inten“real” collapse distance(2) If the resolution in the trans-
sities P,,=P,=P and characterized by a normalized inci- verse directionAx=Ay, is too coarse, theN will be con-
dent radiusa(0)=1 with a(0)=0. Behaviors comparable to served for allz, but at some distance close to the collapse,
the present ones would be obtained by considering inciderthe system will behave as if it was discrete and we will
waves of different amplitudes. In the caBe=1 plotted with  observe what is known as trappifig3]. Following this pro-
a dashed line, we observe that the radi(®) oscillates with  cedure, a collapse distance could still be estimated by visual
a constant frequency, which represents steady oscillationaspection, after the program integrated out to the preset in-
around the soliton form for the incident intensity fackx1.  tegration length.
Besides, described with a radius plotted in solid lines, 2D In the following, we have chosen the resolution in the
waveforms are observed to collapse fBe=1.5, and to transverse direction to be sufficiently fine, so that the scheme
spread out folP=0.8. More generally, collapse takes place (1) applies: for instance, in the 2D case, integrations were
when P exceeds the critical threshol®.=4/3 for self- performed with periodic boundary conditions within a box
focusing, as expected, whereas the waves continuously disentaining N, XN, points for transversal integration step
perse in the opposite rande<0.9<P.. These results will sizes Ax=Ay=0.1 covering the simulation domains
later be compared with a direct numerical integration of EqsL,=N,xXAx andL,=N,XAy. In the 1D case, a better reso-
(1) and(2) detailed in the next section. Finally, we mention lution was allowed. From this setup, we thus define the col-
that 3D waves were found to exhibit a radag) tending to  lapse distance as the distance where the deviatidx éx-
zero at a finite distance, for P=1.5 and diverging for lower ceedsAN=10"° and the program stops the integration
intensity values, which describes a finite-distance collapsautomatically. By doing so, we do not have to estimate an
and an asymptotic spreading of the waves, respectivelyypper limit of the possible collapse distance in order to limit
without forming soliton-type structures. the length of integration, as we should do with the scheme

We must stress here that, by virtue of the self-similarity(2). In particular, when calculating the curves depicted in
assumption imposed in the variational model, the estimateBigs. 2 and 3, this procedure offers a considerable reduction
of N,, andN, remain unchanged alorg in such a way that in computer time.
the mass exchanges between the fundamental and secondAll the numerical computations have been performed for
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FIG. 2. Critical powerN "™ above which both waves andv (b)
are numerically observed to collapse for different values of the
coupling parametergp=2 with varying A (increment stepAA=1) 0.8}

(&, A=1 with varyingp (Ap=1) (b). The dashed line represents the
theoretical value of the collapse threshald and the dotted one the
lowest bound\,, . The lengths of the integration box used for
solving Egs.(1) and(2) areL,=L,=12.8,L,=8 for a grid with
N,x N, =(128? points and an integration step sizg=10"%in the 0.4
z direction.

0.6

incident waves having the same Gaussian shapes as the ones 02
used in the variational approach, namely,

_ _ _ 2 8
w(r0=v(r,0=\Pexp—rt/2), (69 N
with an identical intensity factoP and an identical initial 20 “\“‘ ‘ PR
wave half-widtha(0)=1. The mismatch parametgrwas set Z o S Rl ~o
equal to zero. The specifications on the chosen lengths of ] ’
1.5 FIG. 4. Evolution of 1D wave amplitudegn(x,z)| (@ and
. lv(x,2)| (b) vs z towards long-living solitonlike structures for an
S 1.0 incident intensityP=1. The parameters of the numerical simulation
& areL,=204.8,N,=8192, andAz=10"*
\[:; 0.5} ] integrationL,, L, the grid size\,, N, and the integration
step size along have been pointed out in the figures. The
0.0 . , numerically revealed value of the critical total power en-

gaged in the collapse event in the c@se 2 has been plotted
in Figs. 4a) and 2Zb) for different coupling parametegsand
\ by varying P. This value, denoted by/{"™, lies between

FIG. 3. Normalized mean wave wid#(z)/a(0) vs the propa- the two theoretical limits\e and Moy, as expe_cted. From
gation distancez, computed from the ratio of the virial integrals Fig- 2@, it can be noted, however, thalz"™ slightly ex-
1(2)/1(0) with the initial data(69) for different dimension numbers Cceeds the upper threshold for collapsg in some finite
D and different intensity coefficient®: D=1, P=1 (dashed ling  range of\ for a fixed p=2. This weak discrepancy can be
with the simulation parametersi,=51.2, N,=4096, and explained by the fact that the constraiNt>\/ does not
Az=10"% D=2, P=1.5(solid line, lower curvpandD=2, P=0.8  necessarily mean that the requirements for collapskl, <8
(solid line, upper curvewith L,=L,=25.6,N,=N,=256 for an andH®)(z) <0 in the casgg=0, are fulfilled whatever may
integration step sizdz=10"3, be for this interval of parameter values.
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FIG. 5. Collapse of the coupled wave amplitude$x,0,2)| (a)
and|v(x,0,2)| (b) vs the propagation distanee plotted along the
line y=0 in the casd® =2 for an intensity factoP=1.5. The simu-
lation parameters are,=L,=25.6,N,=N, =256, andAz=10"3,

In the following figures, the values=2 andA=1 have

collapse of both waves was observed to occur o2

spread out in the opposite domain Bf values: P<0.885.
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FIG. 6. Spreading of the waves (a) andv (b) vs z in the 2D
case for a weak intensity facté?=0.8. The simulation has been
performed with the same parameters as the ones indicated in Fig. 5.

a(z) plotted with a dashed line fd? =1 first decreases, then
forms a minimum, and afterwards starts to increase asymp-
been used for comparison with the results obtained from thiotically with z. This increase can be explained by the evacu-
variational approach. For this choice of coupling parametersation of the excess mass to the boundaries, which allows the
trapped waves to relax to soliton shapes. In its variational

wheneverP>0.885 and the two waves were observed tocounterpart plotted in Fig. 1, the radiag¢z) can be seen to
exhibit a similar decrease in the early stage of propagation.

These observations are in a good enough agreement with th&wever, unlike the true wave radius plotted in Figa8z)

approximate behaviors resulting from the variational modelafterwards describes steady-state oscillations around the soli-
ton solution. This discrepancy results from the constraint of
conserved partial masses for self-similar trial functions,
which cannot restore the evacuation of the mass excess. Due
waves, computed from the virial integrals and normalizeduo this limitation of the variational approach, the wave radius
with respect taa(0). In the one-dimensional case, the radiusdepicted in Fig. 1 cannot reach, e.g., a steady-state value that

according to which collapse develops 8 P.=4/3 while
waves can be expected to disperseRsr0.9.
Figure 3 illustrates the total mean radiagz) of the
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should have corresponded to the mean soliton width. The On the contrary, in the simpler basic model of 1D trapped
upper solid-lined curve plotted in Fig. 3 represents a continuwaves, collapse has been proved to never occur. In this case,
ously increasing radiua(z) associated with a wave spread- the waves can remain coupled and asymptotically behave as
ing in the two-dimensional case for a weak intensity factor:self-trapped solitons that have been shown to be stable.
P=0.8. It can be seen to be in excellent agreement with the Finally, for the casé =2, although no exact criterion for
behavior illustrated in Fig. 1 for the same data. The lowerthe existence of collapsing solutions has been established, we
curve indicates a continuous decreaseaf) when both  have proven that collapse does not occur when the powers in
waves collapse in the 2D case for an intensity coefficienthe two waves remain below some critical values forzall
P=1.5 exceeding the critical threshol,=4/3. Note that namely, N, (z2)<NS=NJ/(p+1) and N,(z2)<NS=N.//

the singularity develops before the half-widdliz) reaches (p+\), which is assured when the total power is sufficiently
zero. Besides the above-recalled limitations of the numericadbw and satisfietN <Ny, =min{N,4N°}. These conditions
scheme that partly prevent the solutions from reaching exean be viewed as the opposite ones to the requirentdts
actly the collapse distancg , this arrest in the vanishing of that assure, in the two-dimensional case, the collapse of both
a(z) can also be explained by the well-known property ac-wave envelopes when the latter evolve within a purgf)
cording to which collapsing solutions of NLS-type equationsmedium. On the basis of the virial expressi(86) and by
generally blow up and cease to exist before their associatetieans of a variational approach, we also displayed strong
virial integral vanishes. In spite of these discrepancies relatedvidence, supported by a numerical confirmation performed
to the inner structure of the singular solutions to E4$and  for =0, that the mutually trapped waves can undergo a
(2), we can conclude that the variational approach restoresollapse under these same requireméB®, even though
with reasonably good accuracy the main behaviors, i.ethe presence of'? nonlinearities is in favor of stabilizing
spreading and collapse, characterizing the evolution of thgye coupled waves. Imposing both the constrai8® im-
wave envelopew andv. plies that the initial total poweN carried by the incident

In Fig. 4, the amplitudes of the coupled wawesandv  yayes on the whole has to exceed the critical value
have been plotted in the one-dimensional caseRerl. s _Nc 4 aNC. The most salient role played by the qua-
Cc w v*

They illustrate the evolution of 1D trapped waves towardSy qiic nonlinearities alone is, in fact, that they may counter-

stable solitonlike waveforms. During the early stages Ofa*ct the natural spreading of the waves by localizing the latter

propagation, the excess of mass outgoing from the core g d force them to remain mutually trapped, so that the fun-

. ) . al
both waves to the boundaries is radiated away. Figures 5 anégmental and second harmonic waves can evolve under the
6 show in the casd =2 the formation of self-focusing

spikes, due to collapse, for the intensity facR#1.5, and form of stable coupled solitons. However, this behavior does

the spreading of both waves when they carry a lower poWepot exclude the feasibility of a wave collapse in media being

with P=0.8, respectively. The complete dispersion of thedlso sensitive to the wave intensity, i.e., to the Kerr effect.
envelopey, shown in Fig. 6), should forcew to vanish in The x*® nonlinearity can thus dominate not only the natural

turn at largez, due to the mutual coupling of the two waves dispersion of the waves, but also the stabilizing influence of
described by Eqg1) and (2). the x'? nonlinearity, which justifies the collapse of both

waves. Nevertheless, as the self-focusing power threshold
may vary with the mismatch parameter in combined
x?—x® media, this direct comparison with a purely cubic
VIIl. CONCLUSION medium, for whichgB vanishes, restricts the validity of our
o o ] o _ theoretical predictions for collapse to values @fclose to
After deriving the main invariants and the virial identity ,arq.
_descrl_bmg the evolution of_the mean square radius, we have Finally, we postpone to forthcoming papers the question
investigated the mathematical properties of the coupled fung 1e)izing stable two-dimensional solitons in the presence
damental and second-harmonic waves propagating in an 0gg poty guadratic and cubic nonlinearities. In addition, we

tlc:;\iltimedlxm ;Itwt?r br?]thfqvl:ladra:![(i: aln(;i crubﬁKlterr) nonnllr:;]in underline that the role of large mismatch parameters on the
carfies. - Apa 0 EW particuiar Tesufts - concerning ollapse dynamics, the possible mass exchanges between the

different coupling parameters, this study was mainly OleVOte(?undamental and second-harmonic waves and their influence
to so-called attractive nonlinear potentials, for which the

coupling constantp and\ are both assumed to be positive. (r)]n theblnd|v(|j(_jual m((ajar:j s_qu;:]lre radius of tr:je Coﬂpled waves,
In addition, the dispersion coefficiestwas set equal te-1. ave been disregarded in the present study, whose aim was

Summarizing the principal results obtained here, we hav@@inly to give global dynamical behaviors. These problems

shown that 3D coupled waves can self-focus and collapse &hould also be cleared up in the near future.

a finite propagation distancg under the sufficient require-

ments (34), depending on the Hamiltonian and the total

power in the incident waves, as well as on the paramgéter

which represents the relative strength of the quadratic and ACKNOWLEDGMENTS

cubic nonlinearities. In this situation, the absence of local
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