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Self-focusing and solitonlike structures in materials with competing quadratic
and cubic nonlinearities
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We study the mutual influence of quadratic and cubic nonlinearities on the propagation of the coupled
fundamental and second harmonic waves in asymmetric optical media. For attractive potentials with positive
coupling parameters, it is shown that, in systems with two and three transverse dimensions, mutually trapped
waves can self-focus until collapse whenever their respective powers exceed some thresholds. On the contrary,
coupled waves diffracting in a one-dimensional plane never collapse and may evolve towards stable solitonlike
structures. For higher transverse dimension numbers, we investigate the question of forming two-component
solitons and determine criteria for their stability.@S1063-651X~97!13502-4#
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I. INTRODUCTION

The possibility of generating stable solitonlike beams
media with a purely quadratic or so-calledx~2! nonlinearity
has been the subject of many recent investigations, both
oretical @1–9# and experimental@10–14#. These solitary
waves consist of two components, a fundamental wave
its second harmonic, coupled together through cascaded
linear three-wave interaction processes that usually t
place in asymmetric media privileging second harmonic g
eration. It has recently been shown analytically that sta
two-component solitary waves do exist for all dimensi
numbersD of physical interest@3,7–9#, and that, regardles
of the initial wave functions, a catastrophic collapse sho
never occur in purely quadratic materials@8#. Here and in the
following, the letterD refers to the space dimension numb
of the transverse plane, perpendicular to the direction
propagation. As will be seen further, dealing with thre
dimensional ~3D! waves will mean that the propagatio
equations will account not only for the transverse diffracti
of the wave envelopes, but also for their variations in tim

However, even in materials where thex~2! nonlinearity
may be dominant, there always exists a cubic or so-ca
x~3! nonlinearity. One of the effects of thisx~3! nonlinearity is
that the refractive index becomes dependent on the inten
which is also known as the Kerr effect. In media with
purely cubic nonlinearity, this Kerr effect leads to a qu
different evolution of dispersive, weakly nonlinear wa
packets, as described by the well-known nonlinear Sch¨-
dinger ~NLS! equation: although~one-component! solitons
exist and are stable in the one-dimensional caseD51 for
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which the NLS equation is integrable@15#, such localized
beams become unstable in two or more dimensions wh
they either disperse or self-focus until a destructive colla
takes place at a finite propagation distance~see, e.g., Ref.
@16#!.

In the light of these features, an important question c
cerning the propagation of localized coupled waves in ma
rials with bothx~2! andx~3! nonlinearities is thus to determin
whether they converge towards stable solitary waves, or s
ply spread out, or self-focus until a collapse at a finite pro
gation distance. The dynamical equations for coupled wa
in media supporting an interplay between these two non
earities have been derived in@17#, and preliminary investi-
gations showed that two-component solitary waves may e
and be stable in the simplest one-dimensional situation,D51
@18–20#. Generally, the evolution of the coupled waves d
pends on their initial~or incident! values and on the trans
verse dimension characterizing the nonlinear equations
govern their propagation.

In this paper, we investigate the influence of both kinds
nonlinearities~quadratic and cubic! on the possible forma-
tion of stable solitary waves and the collapse of unsta
coupled waves. The model equations are presented in Se
After deriving the main invariants and the characteristic
lation governing the mean square radius attached to the
damental and second harmonic waves in Sec. III, we de
mine some rigorous criteria, for or against the collapse
those mutually trapped waves, depending on their incid
data atz50. We detail this question for the purex~2! nonlin-
earity and for the purex~3! one, separately, then for the com
bined problem in Sec. IV. In Sec. V, we analyze the pos
bility of realizing stable solitonlike structures~so-called
combined orC-type solitons following the terminology in
troduced in@18#! for all transverse dimensions of physic
relevanceD<3. Finally, in Secs. VI and VII, we presen
variational and numerical calculations supporting our th
retical results. They confirm, in particular, that waves with
3555 © 1997 The American Physical Society



nc

di
n
c
an
co
es

n

t

l
ta

lo
n
r

th
t
fo

n

-

er
on

th

rs
c

lf

n.
n
ld

d
ility
ow:

th
ty.
as-
as-

l

city

ffi-
-
this

ns

the

lev

ry

lt-
al

3556 55BERGÉ, BANG, RASMUSSEN, AND MEZENTSEV
sufficient power can collapse under the combined influe
of x~2! andx~3! nonlinearities.

II. THE PROPAGATION EQUATIONS

The dynamical equations for 1D wave packets in me
with bothx~2! andx~3! nonlinearities were recently derived i
@17#. The transverse profile of the field was taken into a
count, and shown to alter the linear dispersion relation
the strength of the nonlinearity through certain structure
efficients. We consider the straightforward extension of th
equations toD dimensions:

i ]zw1s¹W '
2w1w* v1uwu2w1ruvu2w50, ~1!

2i ]zv1s¹W '
2v2bv1 1

2w
21luvu2v1ruwu2v50, ~2!

where the symbol* denotes the complex conjugate functio
Written in a convenient normalized form, Eqs.~1! and ~2!
are valid when the material is lossless and as long as
fundamental frequencyv1 and its second harmonicv252v1
are far from any internal material resonance. The slow
varying complex envelope functions of the fundamen
field, w(rW' ,z), and of the second harmonic,v(rW' ,z), are
here assumed to propagate with a constant polarization a
thez axis. The transverse Laplacian refers to a general tra
verse plane of dimensionD<3, spanned by the radial vecto
rW' . The spatial coordinates (x,y) constitute two of the three
dimensions and correspond to the usual diffraction, while
third one corresponds to a retarded time, with respec
which the variations of the wave envelopes can account
the group-velocity dispersion@21#. Note that in comparison
with the equations given in@17#, the notation has bee
changed by a simple transformation.

We want to study the solutions to Eqs.~1! and ~2! in
arbitrary dimensionsD<3, keeping the linear dispersion re
lation and the definition of the real parameterss, b, l, andr
unchanged. Therefore, we ignore any effect of the transv
profile of the field on the linear dispersion relation and
these parameters. In this case, the quantitiess, b, r, andl are
given by @17#

s5sgn$x̃1s
~3!%, b5

3

4 F x̃1s
~3!/x3

~ x̃1
~2!/x2!

2GDb,

l5
16x̃2s

~3!

x̃1s
~3! , r5

8x̃1c
~3!

x̃1s
~3! , ~3!

where Db5(2k12k2)/k1 is the phase mismatch andx2

[n1Ae0x3 andx3 are given normalization parameters, wi
e0 being the vacuum permittivity. The wave numberkp is
related to the frequencyvp by the linear dispersion relation

kp5npvp /c, np
2511Re$x̃p

~1!%, ~4!

wherenp is the index of refraction associated with thepth
wave andc the speed of light in vacuum. The scala
x̃ p
( j )[x̃ ( j )(vp) denote the Fourier components at frequen

vp of the j th order susceptibility tensor@17#. Thus,
x̃ 1
(2)5x̃ 2

(2) represents the quadratic nonlinearity,x̃ ps
(3) the

part of the cubic nonlinearity that is responsible for the se
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phase modulation, andx̃ 1c
(3)5x̃ 2c

(3) the part of the cubic non-
linearity that is responsible for the cross-phase modulatio

Equations~1! and ~2! are derived using a perturbatio
expansion, in which the normalized amplitude of the fie
plays the role of the small order parametere!1, in accor-
dance with the assumption of weak nonlinearity@17#. The
validity of Eqs.~1! and~2! requires that both the normalize
scalar Fourier components of the second-order susceptib
tensor and the phase mismatch are small as defined bel

ux̃1
~2!/x2u;e, uDbu;e2, ~5!

while both the ratiosux̃ ps
(3)/x3u and ux̃ pc

(3)/x3u are of order
unity. The normalization parameterx3 is chosen as
x35ux̃ 1s

(3)u, which then fixesx25n1Ae0x3. This scaling
makes the parameterb, which represents the relative streng
of the quadratic and cubic nonlinearity, be of order uni
Whenever one of the dimensions under consideration is
sociated with the retarded time, the special symmetry,
sumed when writing the equations in the form of Eqs.~1!
and ~2!, requires that the group-velocity mismatchDb8
5(k182k28)/(uk19uv1) and the group-velocity dispersion fulfil
the requirements

uDb8u;e2, k1k1952k1k29,0, ~6!

with kp8[]kp /]vp andkp9[]2kp /]vp
2. This thereby implies

that not only the phase mismatch, but also the group-velo
mismatch, must be small.

Among the various parameters defined in Eq.~3!, we shall
henceforth consider positive values for the dispersion coe
cient and therefore sets511: in the 3D case with two trans
verse spatial coordinates and a retarded time variable,
can formally modelanomalousgroup-velocity dispersion
@21#.

III. CONSERVED INTEGRALS
AND THE VIRIAL IDENTITY

We begin by establishing the main integrals and relatio
attached to Eqs.~1! and ~2!, whosez-dependent solutions
w,v and their derivatives are assumed to be localized in
transverse space with a sufficient algebraic decrease~for in-
stance,w and v can be supposed to belong to the Sobo
spaceW2

1, at least locally inz!.
First, settings511, we refind the so-called ‘‘power’’~or

‘‘mass’’! integral by multiplying Eqs.~1! and~2! by w* and
v* , respectively, which yields, after taking the imagina
part of the results,

]zuwu2522¹W '•Im~w*¹W 'w!22 Im@~w* !2v#, ~7!

2]zuvu2522¹W '•Im~v*¹W 'v !1Im@~w* !2v#. ~8!

We multiply Eq.~8! by 2 and integrate the sum of the resu
ing equations over the transverse space to get the integr

N5iwi2
214ivi2

2[Nw14Nv , ~9!

which remains preserved along thez axis. For notational
convenience, we have made use of the standardLp norms
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i f ip[S E u f updrW' D 1/p.
Besides, we multiply Eqs.~1! and ~2! by wz* and vz* and
select the real part of the sum of the space-integrated re
to obtain the conserved Hamiltonian:

H[~ i¹W 'wi2
21i¹W 'vi2

2!1bivi2
22Re E ~w2v* !drW'

2
1

2
iwi4

42
l

2
ivi4

42rivwi2
2. ~10!

We now derive a so-called virial relation in the for
] z
2I (z)5F(z) for localized solutions to Eqs.~1! and ~2!.

Defined up to a normalization factorN, I (z) corresponds to
the mean square radius associated with both coupled wa
namely,

I ~z!5irW'wi2
214irW'vi2

2[I w~z!14I v~z!.

We decompose the calculations into two steps:
~i! We first multiply Eq.~1! by (r'

2w* ) and Eq.~2! by
(2r'

2v* ) and sum up the imaginary part of the spac
integrated results to get

]zI ~z!54 Im E rW'•~w*¹W 'w12v*¹W 'v !drW' . ~11!

~ii ! Then we multiply Eq.~1! by (rW'•¹W 'w* ) and inte-
grate the real part of the result to obtain after a few integ
tions by parts:

]zIm E ~rW'•¹W 'w!w* drW'

52i¹W 'wi2
22

D

2
iwi4

42Driwvi2
2

1Re E w2rW'•¹W 'v* drW'

2rE uvu2rW'•¹W 'uwu2drW' . ~12!

Next, repeating the same procedure on Eq.~2!, we multi-

ply the latter by (rW'•¹W 'v* ) to find

2]zIm E ~rW'•¹W 'v !v* drW'

52i¹W 'vi2
22

D

2
Re E ~w2v* !drW'2

lD

2
ivi4

4

2Re E w2~rW'•¹W 'v* !drW'1rE uvu2rW'•¹W 'uwu2drW' .

(13)

Combining Eqs.~12! and~13! into thez derivative of Eq.
~11! finally yields the virial identity
lts

es,

-

-

]z
2I ~z!58~ i¹W 'wi2

21i¹W 'vi2
2!22D HRe E ~w2v* !drW'

1iwi4
41livi4

412riwvi2
2J , ~14!

which can also be written, using the definition~10!, in the
alternative forms

]z
2I ~z!58~H2bivi2

2!12~42D !Re E ~w2v* !drW'

1~422D !~ iwi4
41livi4

412riwvi2
2!, ~15!

or, equivalently,

]z
2I ~z!52~42D !~ i¹W 'wi2

21i¹W 'vi2
2!12D~H2bivi2

2!

2D~ iwi4
41livi4

412riwvi2
2!

54~22D !~ i¹W 'wi2
21i¹W 'vi2

2!14D~H2bivi2
2!

12D Re E ~w2v* !drW' . ~16!

From expression~15!, we recognize the typical functiona
(H2bivi 2

2) and the coefficient~42D! that characterize
waves propagating in a purelyx~2! material @8#. We also
notice the dimensional coefficient~422D! in front of the
nonlinear potentials usually associated with the cubic N
equation forw @16#, which is easily recovered by settin
v50 in Eq. ~1! and by disregarding Eq.~2!.

IV. CRITERIA FOR WAVE COLLAPSES

In what follows, we derive analytical criteria for the ex
istence or absence of wave collapse for transverse dimen
numbers of physical relevanceD<3. We divide the problem
into three parts and first discuss the simpler cases of m
that have either a purely quadratic nonlinearity or a pur
cubic one, respectively, before going through the more co
plicated problem for which both kinds of nonlinearities a
present in Eqs.~1! and ~2!.

A. Absence of collapse in media
with a ‘‘pure’’ x„2… nonlinearity

We first prove the absence of collapse for trapped wa
propagating in a purely quadratic medium. Some argume
displaying this property were already given in@8#. Here, we
establish a rigorous proof that thex~2! nonlinearities alone
cannot promote a collapsefor any initial data. To this aim,
we omit the cubic contributions in Eqs.~1! and ~2! and we
bound from below the resulting virial relation~16! as fol-
lows:

]z
2I ~z!52~42D !~ i¹W 'wi2

21i¹W 'vi2
2!12D~H2bivi2

2!

>
~42D !

2
~ i¹W 'wi2

214i¹W 'vi2
2!12D~H2bivi2

2!.

~17!

Then, using the well-known inequality~see, e.g.,@16#!
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igi2
4<

4

D2 i¹W 'gi2
2irW'gi2

2 ~18!

applied to anyL2-integrable functiong, we construct the
estimate

~Nw14Nv!
2<

4

D2 ~ i¹W 'wi2
214i¹W 'vi2

2!I ~z!, ~19!

which simply results from employing the obvious inequal

2ab<qa21b2/q ~q.0! ~20!

with q51 to the cross-product of the expressi

(i¹W 'wi2irW'wi214i¹W 'vi2irW'vi2)2. Inserting Eq.~19! into
Eq. ~17!, we get

]z
2I ~z!>

~42D !

8

D2N2

I ~z!
1C, ~21!

where C denotes the constant:~i! C52D(H2bN/4) if
b.0; ~ii ! C52DH if b<0.

Let us now suppose that a collapse may occur at a g
distancezc , in the usual senseI (z)→0 asz→zc , similarly to
the singular solutions of the NLS equation@16#. Then, nec-
essarily,I (z) must decrease from a certain distancez0 until
vanishing atzc.z0 . Therefore, we integrate Eq.~21! from
z0<z after multiplying it by]zI (z),0 and obtain

E~z![@]zI ~z!#21
42D

4
D2N2 ln

1

I ~z!
22CI~z!<E~z0!

,1`. ~22!

SinceE(z0) is finite, Eq.~22! shows that the limitI (z)→0 is
impossible forD<3, which proves that in media with qua
dratic nonlinearities, a wave collapse cannot occur. Howe
valid the initial data~incident waves! may be, this proof is a
generalization, and thus an improvement, of the analysis
formed in Ref.@8#.

From the previous result, we conclude that the total m
square radius attached to the two waves,I (z)
5I w(z)14I v(z), where I w(z) and I v(z) are both positive,
will never tend to zero. Note that, strictly speaking, th
propertyI (z)→” 0 does not prevent one of the two virial com
ponents,I w(z) or I v(z), from vanishing while the other com
ponent could possibly keep a finite nonzero value. As a c
sequence, this would imply the gradient norm associa
with the vanishing virial component to blow up~or to di-
verge! as z→zc , by virtue of the inequality~18!. Even
though such a situation where only one wave compon
blows up with a diverging gradient norm might lead to se
ous inconsistencies in, e.g., the conservation of the Ha
tonian integral, it is not forbiddena priori. In this sense,
proving the absence of collapse from the nonvanishing of
virial integral I (z) constitutes a weaker result than provin
that the gradient norms remain bounded from above, a
well known in the simpler context of the NLS equation@16#.
In view of the inequalities~18! and~19!, the boundedness o
gradient norms, from which the global existence of solutio
follows, indeed assures that the corresponding virial integ
n
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will never vanish for a given nonzeroL2 norm, whereas the
reciprocal implication is not true in general.

On the contrary, as will be seen below, proving tha
collapse occurs in the standard NLS senseI (z)→0 asz→zc
will imply by itself the simultaneous vanishing of the viria
componentsI w(z) and I v(z), leading to the blow up of both
gradient norms at the maximum propagation distancezc , by
virtue of the inequality~18! applied to both wavesw andv,
separately. Even if collapse should take place at a dista
shorter thanzc , one can still expect in this situation that th
divergence of one given solution would cause the diverge
of the other one through their mutual nonlinear coupling,
such a way that the ultimate collapse distance should
identical for the two wave components.

B. Collapse in media with a ‘‘pure’’ x„3… nonlinearity

Investigating now the purely cubic case, we omit thex~2!

contributions; i.e., we setw* v5w2/250 for the nonlinear
terms of Eqs.~1! and ~2!. The present investigation is mad
in view of enlightening the coming more complicate
x~2!2x~3! problem; details exclusively attached to a pure
cubic medium are planned to be presented in a forthcom
publication @23#. For a purex~3! nonlinearity, we can first
notice that the individual powersNw and Nv are separate
constants of motion~see, e.g.,@22#!, unlike the combined
x~2!2x~3! problem for which only the total powe
N5Nw14Nv is conserved. Furthermore, the mismatch p
rameterb simply reduces to zero in that case; in this respe
any linear term such as thisb contribution could easily be
removed by a simple phase transformationv→ve2 ibz/2.
When taking all these properties into account, the Ham
tonian integral~10! reduces to

H ~3!5~ i¹W 'wi2
21i¹W 'vi2

2!2
1

2
iwi4

42
l

2
ivi4

42rivwi2
2,

~23!

and the virial identity~15! becomes

]z
2I ~z!58H ~3!1~422D !~ iwi4

41livi4
412riwvi2

2!.
~24!

1. Absence of collapse for D51

We demonstrate that the energy integralH ~3! can be
bounded from below for low transverse dimension numbe
in order to show the global existence of the solutionsw and
v in the caseD51. For this purpose, we first recall th
Sobolev inequality

i f i4
4<Cf i¹W ' f i2

Di f i2
42D ~25!

valid for anyLp integrable functionf with Cf5const. Ap-
plied to the solutionsw, v in the 2D case~D52!, one has
Cw52/Nc,w andCv52/Nc,v where the best constantsNc,w

best

andNc,v
best optimizing Eq. ~25! can be determined from th

NLS ground-state equation@24#. Both these values are iden
tically equal to the critical thresholdNc for a 2D self-
focusing. Computed from the radially symmetric grou
state of the cubic NLS,Nc has the precise valueNc511.68.
Furthermore, we need the Schwarz inequality, together w
Eq. ~20! defined forq51, to estimate
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iwvi2
2<iwi4

2ivi4
2< 1

2 ~ iwi4
41ivi4

4!. ~26!

Applying Eqs.~25! and~26! to the integralH ~3! enables us to
bound the latter as follows:

H ~3!>F~ i¹W 'wi2 ,i¹W 'vi2!

[i¹W 'wi2
2S 12ew

Cw

2
Nw
22D/2i¹W 'wi2

D22D
1i¹W 'vi2

2S 12ev
Cv

2
Nv
22D/2i¹W 'vi2

D22D , ~27!

where ~i! ew5~r11! if r.0 or ew51 if r,0, ~ii !
ev5max$r1l,r% if r.0 or ev5max$l,0% if r,0 @taking the
maximum value among the two previous ones depe
whetherl is positive or negative#.

Whatever the parameters~r,l! may be, the constantsew
and ev are non-negative. From the estimation~27!, we de-

duce thatF is bounded in the plane (i¹W 'wi2 ,i¹W 'vi2) for
subcritical dimensionsD,2. So, the functionalH ~3!>F re-
mains bounded in turn from below forD,2, which indicates
that in this case, fixed-point solutions, such as soliton-t
structures, can be stable if they realize the minimum of
Hamiltonian~see the next section for a detailed discussion
soliton stability in the context of the fullx~2!2x~3! problem!.
In addition, recalling that a collapse characterized
I (z)5I w(z)14I v(z)→0 implies the divergence of the gra

dient normsi¹W 'wi2
2 and i¹W 'vi2

2, in accordance with the
inequality ~19!, we easily see from Eq.~27! that such a col-
lapse can never occur forD,2, since the finiteness ofH ~3!,
which is a constant of motion, implies that the two gradie
norms must remain bounded in that case. In connection w
this result, the nonvanishing ofI (z) can easily be recovere
by applying the virial integration technique detailed in Se
IV A. We now investigate the complementary situatio
D>2.

2. Occurrence of collapse for D>2

We first study the most natural configuration for havi
collapse, namely, the one corresponding to attractive po
tials with positive coupling constants~nonlinearity coeffi-
cients! l,r.0. From the virial identity~24!, it merely fol-
lows that collapse must occur forD>2 under thesufficient
condition

H ~3!,0. ~28!

Once this condition is fulfilled, both waves blow up at
maximum propagation distancezc since the vanishing o
I (z) implies the simultaneous vanishing of the individu
mean square radiusI w(z) and I v(z). As previously recalled,
even if collapse takes place at a shorter distance, the d
gence of one given solution should force the divergence
the other one through their mutual coupling, so that the c
lapse distance should be the same for both wave com
nents. Note that forD.2, the functionalF is unbounded
from below withew5r11 andev5r1l, which may indicate
the presence of collapse~with the restriction, however, tha
an unboundedF does not necessarily imply an unbound
Hamiltonian!.
s

e
e
f

y

t
th

.

n-

l

r-
f
l-
o-

Investigating the opposite case of a repulsive poten
with r,0 for D>2, we can use the virial relation~24! again
and bound it from above:

]z
2I ~z!<8H ~3!1~422D !@~r11!iwi4

41~r1l!ivi4
4#,

by means of the inequalities~26! and ~12D/2!r>0. From
this, we conclude that collapse can still occur for a negat
coupling constantr under the requirement~28!, provided
that this parameter belongs to the narrow range of valu
max$2l,21%,r,0.

Besides, at the critical dimensionD52, when using Eqs.
~25! and~26! the quantityH ~3! is found to satisfy for positive
coupling parameters:

H ~3!>i¹W 'wi2
2F12~r11!

Nw

Nc
G1i¹W 'vi2

2F12~r1l!
Nv

Nc
G ,

~29!

so that the sufficient condition~28! implies that one among
the two following constraints must at least be satisfied:

Nw.Nw
c [

Nc

~r11!
and/or Nv.Nv

c[
Nc

~r1l!
. ~30!

Promoted by incident waves obeying the requirement~28!,
collapse may therefore take place for a total powerN ex-
ceeding the critical valueNc:

N.Nc[Nc /~r11!14Nc /~r1l!.

Conversely, assuming thatNw andNv arebelow their re-
spective boundsNw

c andN v
c prevents the collapse in the NL

sense, as the gradient norms of the fundamental and sec
harmonic waves remain bounded by the finite quantityH ~3!

in Eq. ~29!. This situation only applies whenH ~3! satisfies the
condition opposite to Eq.~28!, namely,H ~3!.0. Reexpress-
ing once more the bound~29! in terms of the total powerN,
it is sufficient to ensure

N,Nlow[minH Nc

r11
,
4Nc

r1l J
for preventing the collapse. An alternative way to prove th
collapse does not occur in the two-dimensional case for lo
power waves is to rewrite the virial relation~14! in the form

]z
2I ~z!>8$i¹W 'wi2

2@12~r11!Nw /Nc#

1i¹W 'vi2
2@12~r1l!Nv /Nc#%

>2~12N/Nlow!@ i¹W 'wi2
214i¹W 'vi2

2#.

We then employ the inequality~19! and reason as in Sec
IV A to conclude that no collapse happens in this ca
Originally established for positive coupling constantsr and
l, this result can be extended to the caser,0 by repeating
the former reasoning on the virial identity now bounded
follows:

]z
2I ~z!>4@2~ i¹W 'wi2

21i¹W 'vi2
2!2~ iwi4

41livi4
4!#

>2~12N/a!@ i¹W 'wi2
214i¹W 'vi2

2#
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for N,a[min$Nc,4Nc/l%, after using the Sobolev inequalit
~25!. This absence of collapse thus concerns larger pow
than in the preceding situation. Forl,0, the same kind of
treatment can be applied by ignoring theL4 norm ofv in the
previous estimate, so that the constraint on the partial pow
only concernsNw .

We can finally observe that, in the so-called one-fie
limit v→0 when we disregard Eq.~2!, the NLS necessary
conditionNw.Nc for a critical collapse is directly recovere
from the estimates~29! and ~30!, sincer vanishes in this
limit, as this coupling constant makes sense as long as
second harmonic wavev has nontrivial values only. In this
respect, it can be noticed that the choiceq51, in the basic
inequality ~20! used to get~26!, allowed us to derive the
sharpest estimates~30! that restore the NLS critical threshol
whenv→0 in Eq.~1!. This NLS critical powerNw

c→Nc can
also be refound by repeating the above procedure, sta
back to the key estimate Eq.~26!, which simply vanishes in
the casev50.

For the sake of clarity, we henceforth focus our attent
on the most salient choice of the coupling parameters p
moting the collapse, i.e., from now on, the constantsr andl
are supposed to be always positive.

C. Competing between thex„2… and x„3… nonlinearities

Returning to the complete equation set~1! and ~2!, we
investigate the dimensional casesD53 andD52, succes-
sively, for arbitrary values of the mismatch parameterb.

1. The supercritical case D53

We first make use of the inequality~20! with q51/2 on
the integral contribution

Re E ~w2v* !drW'<iwi4
2ivi2<iwi4

41 1
4 ivi2

2, ~31!

in order to bound the virial identity~15! as follows:

]z
2I ~z!<8FH2S b1

~D24!

16 D ivi2
2G14~32D !iwi4

4

12~22D !~livi4
412riwvi2

2!, ~32!

which leads in the three-dimensional caseD53 to

]z
2I ~z!<8@H2~b2 1

16 !ivi2
2#. ~33!

A sufficient condition for the collapse to occur is then simp

H2~b2 1
16 !Nv,0. ~34!

In terms of the conserved quantitiesN andH, this condition
is always ensured wheneverH and N satisfy: ~i! H,0 if
b>1/16; ~ii ! H,(b21/16)N/4 if b,1/16. Condition~i! re-
sembles the sufficient standard condition for collapse,H,0,
in the purex~3! problem. Forb,1/16, condition~ii ! is more
restrictive than the latter one and, in particular forb50, it
appears to be more severe here than in the purex~3! case.
This can be explained by the stabilizing effects induced
the x~2! nonlinearities that contribute to the virial relatio
~15!, through the quadratically nonlinear potenti
rs

rs

he

ng

n
o-

y

Re*(w2v* )drW' , with a positive quantity which counteract
the requirement] z

2I (z),0 for collapse.
We finally mention that criteria for wave collapse, sharp

than Eq.~34!, might be found after combining the inequal
ties ~25! and ~32! following the steps of the analysis pe
formed in@25# in the context of the NLS equation. Howeve
establishing these criteria would require one to determine
best constantsCw

bestandCv
bestcorresponding to Eq.~25! in the

3D case, which is beyond the scope of the present pape

2. The critical case D52

Proving the existence of collapsing solutions in the 2
case is not straightforward. Indeed, forD52, the virial rela-
tion ~15! reduces to

]z
2I ~z!58~H2bivi2

2!14 ReE ~w2v* !drW' , ~35!

where the condition (H2bivi 2
2),0 is not sufficient to as-

sure a blow up and where the potential contribution rela
to thex~2! nonlinearity could even be thought to act as inh
iting the collapse. Even when employing all the inequalit
expounded so far, we are not able to bound efficiently t
contribution in order to conclude rigorously on the existen
of collapse. Instead, we can argue as follows by using
alternative virial formulation~16!:

]z
2I ~z!54~H2bivi2

2!14H ~3!, ~36!

whereH ~3! is still defined by Eq.~23!. In view of Eq.~36!, a
sufficient condition for promoting the collapse should cons
in the conjugation of the two constraints:

~a! H ~3!,0, ~b! H2bNv,0,

assuring] z
2I (z),0 if they were satisfied for everyz. Using

the estimation~29!, we easily deduce that condition~a! im-
plies that one of the two inequalities~30!, i.e.,Nw(z).Nw

c ,
Nv(z).N v

c, should be at least verified. For initial data yiel
ing Re*(w2v* )drW'(z50).0, condition ~a! also implies, at
least initially, that ~b! is systematically satisfied, which
surely promotes self-focusing in the early stages of the w
evolution. The problem raised in the present context is t
neitherH (3)(z) norNv(z) are constants of motion, in such
way that we can only expect that the self-focusing proc
will be favored for initial data with sufficiently high powers
Those are optimized withNw(0).Nw

c andNv(0).N v
c, that

is, N.Nc , as in a purely cubic medium. The conditio
N.Nc thus appears to be anoptimal ~or ‘‘by-excess’’ ! con-
dition for self-focusing inx~2!2x~3! media, for which it can
be viewed as an upper limit of the collapse threshold. T
suggests that, as the quadratic nonlinearities tend to cou
act the natural wave dispersion by forming solitons, th
should not efficiently arrest the collapse induced by the cu
nonlinearities, whose localizing effects reinforce the qu
dratic ones. We will later show that, defined under the m
assumptions~30!, the Hamiltonian appears to be unbound
from below, from which the possibility of realizing a co
lapse with the same constraints as in a purelyx~3! medium
follows ~see Sec. V A!. We will, moreover, confirm the de
velopment of collapse under those conditions by means
variational method elaborated in Sec. VI and numeri
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simulations presented in Sec. VII. In this respect, it is imp
tant to note that the above conditionN.Nc possiblyassures
a collapse dynamics forz close to zero only. It does no
necessarily mean that the conditions~a! and ~b! ensuring
] z
2I (z),0 will be fulfilled for everyz ~even atz50!, which

will justify why this ‘‘upper’’ limit N.Nc may sometimes
be exceeded for some ranges of coupling parameters@see,
e.g., Fig. 2~a!#.

Furthermore, let us suppose that,a priori, the require-
mentsH ~3!,0 andN.Nc are always fulfilled. Then, the con
dition ~b! will be verified whenever the invariantsH andN
satisfy

~ i! H,0 for b>0,

~ ii ! H,bN/4 for b,0,

which indicates that the collapse dynamics, and thereby
power threshold for self-focusing, can change according
the value and sign of the mismatch parameterb. In particu-
lar, for the initial data under investigation, it will be mor
difficult to getH,0 for a strictly positiveb, than for a zero
one, because of the contribution1bNv in H. Consequently,
the influence of the mismatch parameter may lead to an
crease of the self-focusing threshold when regarding pos
values ofb, which can alter the basic estimateN.Nc .

On the other hand, we are still able to show that no c
lapse develops forD52 when the partial powers satisfy con
ditions opposite to Eq.~30!. Indeed, let us bound the viria
identity ~16! as follows:

]z
2I ~z!>4F i¹W 'wi2

2S 12~r11!
Nw

Nc
D

1i¹W 'vi2
2S 12~r1l!

Nv

Nc
D G1C ~37!

by using the Sobolev inequality~25! together with Eq.~26!.
Here,C is equal to the constant defined in Sec. IV A. It
now clear that if the constraints on the partial powers

Nw~z!,Nw
c [Nc /~r11!, Nv~z!,Nv

c[Nc /~r1l!
~38!

are a priori always satisfied, then we can defin
ap5min$Nw

c /Nw ,N v
c/Nv%.1 to find

]z
2I ~z!>~121/ap!~ i¹W 'wi2

214i¹W 'vi2
2!1C ~39!

and conclude as in Sec. IV A thatI (z) can never reach zer
in that case. Strictly speaking, we have rather to reaso
terms of the total initial datumN5Nw(0)14Nv(0): due to
thex~2! contribution, the partial powersNw(z) andNv(z) are
not individually conserved alongz and, for instance, one o
them may increase above its respective critical value for
lapse defined by Eq.~38!, when both are below initially.
Therefore, the estimate~39! must be bounded once more
read

]z
2I ~z!>~12N/Nlow!~ i¹W 'wi2

214i¹W 'vi2
2!1C,

where the constant
-

e
to

n-
e

l-

in

l-

Nlow[min$Nw
c ,4Nv

c% ~40!

denotes the same quantity as the one introduced in Sec. I
The reasoning then ends by concluding as in this subsec
This argument shows that, in the critical caseD52, choosing
incident waves with sufficiently small amplitudes ensuri
N,Nlow , in a way analogous to the purex~3! problem, pre-
vents the collapse in the presence of bothx~2! andx~3! non-
linearities.

Keeping in mind that, with an interplay of both kinds o
nonlinearities, the individual powersNw andNv are not con-
served separately, we summarize the different regimes
propagation for the coupled waves as follows:

~i! For low powersN,Nlow[min$Nw
c ,4N v

c%, no collapse
develops. In this case, the virial integralI (z), which is a
measure of the total mean square radius associated with
coupled waves, satisfies] z

2I (z).0, so that waves originating
from steady-state@]zI (0)50# incident data simply spread ou
with I (z)→1` asz→1`.

~ii ! For medium-sized powers lying in the intermedia
range of values,Nlow,N,Nc[Nw

c 14N v
c, we cannot con-

clude about the fate of the trapped waves. In this ‘‘hybrid
regime, coupled waves, whose individual powersNw andNv
remain below their respective critical valuesNw(z),Nw

c and
Nv(z),N v

c for every z, will surely not collapse at a finite
propagation distance. Inversely, self-focusing cannot be
cludeda priori when the partial norms of the waves satis
initially one of the two conditions:Nw(0).Nw

c or
Nv(0).N v

c.
~iii ! For high powersN.Nc , collapse of both waves ma

occur under the requirementH,0 for b>0, orH,bN/4 for
b,0. Even though we did not establish rigorous criteria
this occurrence of collapse, we can expect that waves ev
ing in the presence of bothx~2! andx~3! nonlinearities should
logically self-focus under the same requirements as in
purely cubic medium, i.e., withH ~3!,0, leading to the opti-
mal conditionN.Nc . From the possible unboundedness
the Hamiltonian, this condition, implying that at least one
the two waves possesses a poweraboveits associated thresh
old for self-focusing, can be related to unstable structures
must be recalled, however, that the expectation of colla
under the constraintN.Nc may be revised according to th
value and sign of the mismatch parameterb. Originally, it
follows from a direct comparison with waves evolving
purelyx~3! media for which the mismatch parameter is ze
so that the former predictions should mainly be relevant
values ofb close to zero.

V. SOLITON-TYPE SOLUTIONS

We here investigate the stationary~solitonlike! solutions
of the combinedx~2!2x~3! Eqs. ~1! and ~2!. These solutions
have the form

w~rW' ,z!5ws~rW'!exp~ iVz!, v~rW' ,z!5vs~rW'!exp~2iVz!,
~41!

wherews andvs obey the differential equations
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2Vws1¹W '
2ws1ws* vs1uwsu2ws1ruvsu2ws50, ~42!

2~b14V!vs1¹W '
2vs1

1
2ws

21luvsu2vs1ruwsu2vs50.
~43!

In the following, we assume the existence of nontrivial so
tions ws ,vsÞ0 and therefore deal with so-calledC-type
~combined! solitons, by contrast with the so-calledV- or
W-type solitons investigated in their respective limitsws→0
or vs→0 in Ref. @18#. We supposea priori a real positive
eigenvalueV satisfying the requirementV>max$0,2b/4% to
assurelocalizedsoliton-type solutions~bright solitons!. We
first search for characteristic integral relations satisfied byws

and vs : we multiply Eqs. ~42! and ~43! by ws* and vs* ,
respectively, and sum up the real part of the space-integr
results to find

VNs52~ i¹W 'wsi2
21i¹W 'vsi2

2!2bivsi2
2

1
3

2
Re E ~ws

2vs* !drW'1iwsi4
41livsi4

412riwsvsi2
2

~44!

with Ns[iwsi 2
214ivsi 2

2. Next, we multiply Eqs.~42! and

~43! by (rW'•¹W 'ws* ) and (rW'•¹W 'vs* ), respectively, and inte
grate the real part of the summed-up resulting equations
space to get

VNs5S 2D21D ~ i¹W 'wsi2
21i¹W 'vsi2

2!2bivsi2
2

1Re E ~ws
2vs* !drW'1

1

2
~ iwsi4

41livsi4
4

12riwsvsi2
2!. ~45!

Subtracting then Eq.~45! from Eq. ~44!, we obtain the char-
acteristic relation

Re E ~ws
2vs* !drW'1iwsi4

41livsi4
412riwsvsi2

2

5
4

D
~ i¹W 'wsi2

21i¹W 'vsi2
2!, ~46!

which we employ in order to evaluate the Hamiltonian~10!
on the ground-state solutionsws andvs :

Hs5
2

D
~ i¹W 'wsi2

21i¹W 'vsi2
2!2VNs. ~47!

Similarly, we can compute the virial identity on the two
component ground state (ws ,vs). Using Eqs.~14! and ~46!,
we find the obvious relation] z

2I (z)50, indicating that the
mean square radius associated with the steady-state fu
mental and second harmonic waves remains unchan
alongz.

The trapped waves, able to converge to the fixed-po
solutions of Eqs.~1! and ~2!, are expected to tend toward
such a two-component asymptotic behavior fulfillin
] z
2I (z)50. To investigate the stability of these stationa
-

ed

er

da-
ed

t

solitonlike solutions, we employ the following Lyapuno
procedure starting with the functionalL[H1VN. It is well
established that, in the framework of NLS-type equatio
this functional constitutes an appropriate Lyapunov functi
up to some additional constant contributions making it po
tive @26#. By solving the variational problemdL50, one can
easily see that, also in the present context,L appears to be a
good candidate for analyzing soliton stability, becau
steady-state solutions to Eqs.~42! and ~43! realize an extre-
mum forL. Following Lyapunov’s theorem, proving that th
extremum consists of a strict minimum should be sufficie
for showing the stability of these stationary solutions. To t
aim, we will decompose the analysis into two steps. First,
will demonstrate that, for low dimension numbers, the fun
tional L is bounded from below by a function that exhibits
strict minimum, in such a way thatL surely admits in turn at
least one minimum. Second, we shall solve the variatio
problemdL50 under the constraint of fixedN, in order to
identify one minimum of the Lyapunov function and to r
cover under this constraint that this minimum is reached
the soliton solutions of Eqs.~42! and ~43!.

Before proceeding, we emphasize that, instead of work
with the former functionL, it is more convenient to use th
functionalS[H2bNv . Indeed, in view of the above proce
dure based on the search for bounded integrals and on
constraint of a fixed normN, making use ofS rather thanL
amounts to obtaining analogous results, since finding
bound from below forS provides a bound from below forL
~these two functions satisfyL>S for localized ground states
defined in the eigenvalue domainV>max$0,2b/4%!. More-
over, working at fixedN, it can be checked that the estimat
inferred fromL overlap the ones found fromS. In this con-
text, it is thus sufficient to useS[H2bNv , instead ofL[H
1VN, in order to avoid any redundant treatment when de
ing with different values of the mismatch parameterb. Let us
notice that reasoning with a fixedN implies that both of the
partial normsNw andNv are finite in turn, so that the con
tributionbivi2

2 does not here play any crucial role. The fun
tional S is always bounded by~H2bN/4! for b.0 and by
H, simply, in the opposite caseb<0. Compared with the
former functionalL, only the absolute value of the minimum
is displaced whenS is chosen as a Lyapunov function. Fro
these arguments, we easily understand that the most im
tant integral to be evaluated in the present approach is
Hamiltonian: the soliton solutions are then localized statio
ary points of the HamiltonianH in the variety of functions
with a constant normN.

To resolve the first point of the above-summarized pro
dure, we employ the inequality

Re E ~w2v* !drW'<iwi4
2ivi2<ACwNw

12D/4i¹W 'wi2
D/2ivi2

<
C
2

i¹W 'wi2
D/2 , ~48!

with C5ACwN
3/22D/4 and obtain the estimate
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H2bivi2
2>i¹W 'wi2

2F12
C
2

i¹W 'wi2
D/222

2
Cw

2
~r11!Nw

22D/2i¹W 'wi2
D22G

1i¹W 'vi2
2F12

Cv

2
~l1r!Nv

22D/2i¹W 'vi2
D22G .

~49!

From expression~49!, it can be seen thatS[H2bivi 2
2 not

only remains bounded from below, but also admits a glo
minimum for D,2 always. In the critical caseD52, the
functionalS is also bounded provided that the partial mas
satisfy Nw,Nc/~r11! and Nv,Nc/~r1l!, separately, tha
is, forN,Nc . In those cases, the right-hand side of Eq.~49!

is bounded parabolically as a function ofi¹W 'vi2, whereas it
exhibits a local minimum as a function ofi¹W 'wi2. In the
opposite case, when the requirements~30! are fulfilled, i.e.,
for a total massN.Nc , S cannot be bounded from below
and the mutually trapped waves may collapse under the s
conditions as in a purelyx~3! medium. ForD53, Eq. ~49!
can never be bounded from below, which possibly indica
the instability of any solitonlike structures.

We now resolve the second point of this analysis:
identify one minimum of the functionalS together with the
fixed-point solutions expected to be stable. First of all,
remark that the stationary solutions of Eqs.~1! and ~2! pos-
sess, at fixedN, the lowest energy level and must thus real
the minimum ofH, or, equivalently, a minimum ofS. Since
these stationary solutions are assumed to be localized in
transverse plane, they should logically correspond to
above-definedC-type solitons. Let us prove this claim b
using the property following whichN is fixed and remains
invariant under the scaling transformation

w~rW' ,z!5
1

aD/2
w̃S rW'

a
,zD , v~rW' ,z!5

1

aD/2
ṽS rW'

a
,zD ,

~50!

and employ the parametera as a Lagrange multiplier forH.
This scaling factora must be identical for the two waves i
order to ensure the conservation of the total powerN, as
resulting from the continuity relations~7! and ~8!. Introduc-
ing Eq. ~50! into S transforms it into

Sa5
d

a2
2

a~2!

aD/2
2

a~3!

2aD
~51!

with the notations

d[i¹W '8 w̃i2
21i¹W '8 ṽi2

2, a~2!5Re E ~w̃2ṽ* !drW' ,

a~3!5iw̃i4
41li ṽi4

412riw̃ṽi2
2,

where¹W '8 [¹W rW' /a . From the expression~51!, one deduces
thatS admits a minimum forD<2 ~given by the minimum
of H at fixedN!, in accordance with the previous analysis.
l

s

e

s

e

e

he
e

addition, this minimum is reached on the solutions satisfy
]Sa/]aua5150, i.e., for states verifying the relation

a~2!1a~3!54d/D, ~52!

which is just the relation~46! satisfied by the two-componen
soliton-solution (ws ,vs). Consequently, under the constrai
of fixed normN, the minimum ofH, as well as the one of the
Lyapunov functionalsS andL, is reached on this two-soliton
family, as expected.

The previous arguments enable us to predict that mutu
trapped solitons are stable provided that the space dimen
is equal to unity, which thereby provides an analytical co
firmation of the stability of the 1DC-type solitons recently
observed by Trillo and co-workers@18,20# in numerical com-
putations. Moreover, solitons may be stable in the tw
dimensional case, provided that the powers in the incid
waves be below their self-focusing thresholds. Note that
present analysis supposesa priori that such localized struc
tures exist and are unique for a given class of parame
~V,b,l,r!. It neither proves their existence~numerical obser-
vations of 2D solitons will be presented in a forthcomin
paper@27#! nor specifies the initial conditions under whic
they can arise. In fact, the previous conclusions apply
stationarynonlinearstates created from incident waves th
are sufficiently ‘‘massive’’ to generate an attractor able
form solitary waves without promoting their collapse. T
illustrate this point, we briefly recall the case of NLS so
tons, obtained from Eqs.~1! and ~2! by settingv50 in Eq.
~1! and ignoring the second equation forv. It is well known
that NLS solitons correspond to ‘‘linked’’ states for whic
the Hamiltonian Hs5[(D22)/(42D)]VNs is negative
~see, for instance,@16#!. In the caseD51, solitons exhibit a
sech shape and are stable in the sense that any initial da
corresponding to a negative-energy state, asymptotic
gives rise to a finite set of sech-shaped solitons by evac
ing, if necessary, the excess mass through a radiative ta
a certain sense, formation of stable solitons is permitted,
cause the collapse process is strictly forbidden in this ca
For comparison, solitonlike structures of the 2D NLS equ
tion, which correspond to a zero-energy stateHs50, cannot
naturally emerge with a stable shape from a wide class
initial data, because the valueHs50 constitutes a margina
boundary between a continuous wave spreading, ensure
positive-energy states, and a finite-distance blow-up, ens
for negative-energy states. In this situation, the collapse p
cess is permitted. A similar argument enables us to exp
the formation of two-component solitons in media with
pure x~2! nonlinearity for any dimensionD<3: as a wave
collapse is impossible to realize in such media and beca
steady-state solitary waves are stable, the latter may
formed from a wide range of negative-energy initial data@8#.

Thus, generalizing the previous arguments to the interp
of x~2! andx~3! nonlinearities, we emphasize that the pos
bility of realizing 2D stable solitonlike structures will depen
on the sign ofHs , defined by Eq.~47!, and on the values o
the individual powersiwsi 2

2 and ivsi 2
2. If Hs is negative, or

Ns far above the critical thresholdNc for collapse, no stable
2D solitons should be produced because the intervalNs.Nc
overlaps the one associated with solutions which are
pected to blow up in this range. In the opposite caseNs,Nc ,
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the creation of two-component solitons is not forbiddena
priori . However, clearing up this question requires one
identify the localized solutions to the set of differential equ
tions ~42! and~43! for a given eigenvalueV, and to compute
the energy and power integrals attached to these soluti
which is beyond the scope of the present paper.

VI. A VARIATIONAL APPROACH

A. Trial functions describing the coupled waves

In this section, we follow the dynamical~z-dependent!
behaviors of localized solutions (w,v) using a variational
approach based on self-similar-like substitutions of the fo

w~rW' ,z!5
1

AA~z!
WS rW'

a~z!
,zD ,

v~rW' ,z!5
1

AB~z!
VS rW'

b~z!
,zD , ~53!

wherea(z) andb(z) denote the typicalz-dependent radius
of w andv, respectively. In order to identify the real inten
sity factorsA21(z) andB21(z) and the phases ofW andV,
we insert the solutions~53! into the continuity equations~7!
and ~8! and obtain

S ]z2
Ȧ

A
2
ȧ

a
jWa•¹W aD uWu252

2

a2
¹W a•@ uWu2¹W a arg~W!#

2
2

AB
Im@~W* !2V#, ~54!

2S ]z2
Ḃ

B
2
ḃ

b
jWb•¹W bD uVu252

2

b2
¹W b•@ uVu2¹W b arg~V!#

1
AB
A

Im@~W* !2V#, ~55!

where we have defined¹W $a,b%[¹W jW { a,b}
with jWa[rW' /a(z)

andjWb[rW' /b(z). Here, the dot notation means a different
tion with respect toz. Let us first discuss the self-consisten
of the above mass continuity relations with respect to
transformations~53!. By ‘‘self-consistency,’’ it is meant tha
the original conservation laws must remain formally u
changed, and therefore be covariant, through these tran
mations. First, in order to recover a covariant form of the
conservation equations, the respective phases ofW and V
have to expand as follows:

arg~W!5uw~jWa ,z!1a~z!ujWau2,

arg~V!5uv~jWb ,z!1b~z!ujWbu2

with a(z)5aȧ/4 andb(z)5bḃ/2, which, in addition, allows
us to determineA(z)5[a(z)]D and B(z)5[b(z)]D up to
some constant factors that can be set equal to unity with
loss of generality. Second, keeping the previous result
mind, one then deduces that the exact canceling betwee
x~2! nonlinear contributions required for restoring the to
o
-

s,

e

-
or-
e

ut
in
the
l

power ~9! implies A(z)5B(z), and thusa(z)5b(z). So,

from now on, the rescaled variablesjWa andjWb reduce to the

single one:jW[rW' /a(z) ~we will thereby adopt the notation

¹W 5¹W jW!. In summary, choosing to model the two coupl
waves by

w~rW' ,z!5
1

@a~z!#D/2
Rw~jW ,z!expF iuw~jW ,z!1 i

aȧ

4
j2G ,

~56!

v~rW' ,z!5
1

@a~z!#D/2
Rv~jW ,z!expF iuv~jW ,z!1 i

aȧ

2
j2G ,

~57!

ensures preserving the original structure of the continu
relations whose transformed versions~54! and ~55! indeed
simplify into

@a~z!#2]zuWu2522¹W •~ uWu2¹W uw!

22@a~z!#22D/2Im@~W* !2V#, ~58!

2@a~z!#2]zuVu2522¹W •~ uVu2¹W uv!

1@a~z!#22D/2Im@~W* !2V#. ~59!

Further, we need to make a suitable choice for the fu
tions (Rw ,Rv ,uw ,uv). As it is clear that we cannot find ana
lytically their exact spatial dependences, we postulate th
proper approximation is that the amplitude functionsRw and
Rv are exactly self-similar, in the sense that both of them

not explicitly depend onz and therefore reduce toRw(jW ) and

Rv(jW ), as is usually assumed in the context of the cubic N
equation@28–30#. Under this self-similarity condition, thez
derivative of the continuity relations~58! and~59! is zero, so
that the most natural choice consistent with the vanishing
the right-hand sides of these equations is to impose pro
test functions withuw5uv50. Additional phase contribu-
tions in the z-dependent formsuw(z)5uv(z)/2 could be
checked not to alter the coming results. Note that with t
self-similar prescription, the partial powersNw andNv re-
main constant alongz.

Finally, for modeling the amplitudesRw andRv , we first
refer to the recent work@31# where Gaussian functions wer
shown to approach 1D and 2D trapped solitons inx~2! media
with a great accuracy. On the other hand, we recall t
Gaussian trial functions of the form exp~2j2/2! are reason-
ably good approximations of sech-soliton solutions to the
cubic NLS equation. Furthermore, dynamical solutions c
structed with Gaussians of the same form restore the coll
ing behaviors of singular solutions to the cubic 2D NL
equation~see, e.g.,@29# and @30#!. In this case, the critica
massNc511.68 for a 2D self-focusing is approximated b
Nc.4p when the true NLS solution is forced with a Gaus
ian distribution like exp~2j2/2!. In light of this, we therefore
apply the following test functions for the coupled waves:

w~rW' ,z!5@a~z!#2D/2Rw~jW !expS i aȧ4 j2D ,
Rw~jW !5APw expS 2

j2

2 D , ~60!
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v~rW' ,z!5@a~z!#2D/2Rv~jW !expS i aȧ2 j2D ,
Rv~jW !5APv expS 2

j2

2 D , ~61!

wherePw and Pv denote some intensity coefficients to b
fixed later on.

B. The dynamical system and related numerical results

We insert the trial solutions~60! and ~61! with self-
similar amplitudes into the virial identity~14!, in order to
derive the equation governing the mean radiusa(z) of the
coupled fundamental and second harmonic wavesw andv,
namely

ä5
4

I F d

a3
2
D

4 S a~2!

a11D/21
a~3!

a11DD G ~62!

with

I[ijWRwi2
214ijWRvi2

2, d[~ i¹W 'Rwi2
21i¹W 'Rvi2

2!,

a~2![E Rw
2Rv djW , a~3![iRwi4

41liRvi4
412riRwRvi2

2.

We discuss the dynamical system~62! for each transverse
dimension numberD and introduce the Gaussian test fun
tions into the above integrals computed in a radially symm
ric geometry. By doing so, we find that the equation gove
ing the evolution of the radiusa(z) simplifies for any
dimension numberD into

ä5
4

Pw14Pv
FPw1Pv

a3
2
2D21PwAPv

6D/2a11D/2

2
~Pw

21lPv
212rPwPv!

211D/2a11D G . ~63!

For comparison, the counterpart of Eq.~63! in the context
of the cubic NLS equation can easily be recovered by dis
garding the contributions inv (v5Pv50). For instance, in
the caseD52, the dynamical system describing the evo
tion of a(z) in the NLS limit v→0 is expressed as

ä5
4

a3 F12
Nw

4pG ~64!

with Nw5iRwi 2
25pPw . It predicts the occurrence of a 2D

~critical! collapse at a finite propagation distancezc with a
vanishinga(z). This collapse develops for incident stead
state@ȧ~0!50# Gaussian beams, whenever the powerNw ex-
ceeds the critical thresholdNc.4p. In the opposite case
Nw,Nc , the wave spreads out with a diverginga(z).

In solutions to the two-component system~1! and ~2!,
collapse is expected to occur in purelyx~3! media if the suf-
ficient conditionH ~3!,0 is satisfied by the incident wave
~see Sec. IV B!, while we cannot definitively conclude on th
occurrence of collapse for waves propagating in the prese
of competing quadratic and cubic nonlinearities. In the la
t-
-

-

-

ce
r

context and in view of the virial expressions~35! and ~36!,
we imposea priori this sufficient condition reading for a
nonzerob:

H~z!2bivi2
25

d

@a~z!#2
2

a~2!

@a~z!#D/2
2

a~3!

2@a~z!#D
,0.

~65!

This quantity enters the first integral of motion associa
with the dynamical system~62!:

G~z!5
I
4

@ ȧ~z!#21@H~z!2bNv#5G~0!. ~66!

Beginning with the caseD51, we observe from Eqs.~63!
and ~66! that not only a collapse cannot be realized in th
case withd.0, but also the dynamical system~62! admits
fixed points corresponding to stable positions attained at
minima of the functional~65!. These fixed points indicate th
asymptotic formation of one-dimensionalC-type solitons
that are stable, following the discussion in Section V. T
wave radiusa(z), given by the variational analysis, oscillate
with a constant frequency, which represents steady osc
tions around the soliton form. These oscillations mean tha
an excess of mass could have been radiated away, sol
would have formed.

In the situationD52, it is clear that, since the integra
contributiona~2! is positive, the condition~65! allowing col-
lapse will surely be fulfilled if 2d2a~3!,0, i.e., whenPw and
Pv verify the inequality

V~Pw ,Pv![Pw@42~r11!Pw#1Pv@42~r1l!Pv#

1r~Pw2Pv!
2

,0, ~67!

implying hencePw.Pw
c [4/(r11) andPv.P v

c[4/(r1l)
with r,l.0. These constraints then recover the conditio
~30! andN.Nc for collapse in purelyx

~3! media, keeping in
mind the relationsNw,v5pPw,v andNc54p. In those con-
ditions, the system~63!, rewritten as

ä5
1

Pw14Pv
FV~Pw ,Pv!

a3
2
4PwAPv

3a2 G , ~68!

shows that, starting from steady-state waves having a
malized radius@a~0!51, ȧ~0!50#, a collapse at a finite dis
tance zc will always take place withV(Pw ,Pv),0. In-
versely, if we now consider the inequality opposite to E
~67!, which is satisfied withPw,Pw

c andPv,P v
c, Eq. ~68!

may contain a center-type equilibrium position correspo
ing to the minimum of~65!, for intensities rather close to
their self-focusing thresholds. This indicates the possible
mation of two-dimensionalC-type solitons. For intensity
values far below the self-focusing thresholds, the waves
perse witha(z)→1` asz increases, similarly to the dispers
ing NLS solutions. These behaviors are consistent with
points ~i!–~iii ! emphasized at the end of Sec. IV.

Besides, three-dimensional waveforms can be seen to
lapse rapidly whenPw andPv are sufficiently large to ensur
ä~0!,0 initially. More precisely, collapse surely occu
when the condition~65!, supplemented byNv/165p3/2Pv/16
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to recover the sufficient requirement~34!, is initially satisfied
with a~0!51. In the opposite situation, the waves genera
spread out, like the standard dispersing solutions of the c
NLS equation. We can therefore conclude from these
proximated behaviors that no stable soliton should be form
in combinedx~2!2x~3! materials whenD53, in agreement
with the results of Sec. V. This conclusion is also consist
with the property according to which the functional~65! con-
tains no local minimum in that case.

Typical behaviors of the wave radiusa(z) have been il-
lustrated forD51 andD52 in Fig. 1, obtained by a numeri
cal integration of the variational equation~63!. We have cho-
senr52 andl51, so that the critical partial powers have th
identical valuesPw

c 5P v
c54/3. For the sake of simplicity

we have considered waves with equal values for their int
sities Pw5Pv[P and characterized by a normalized inc
dent radiusa~0!51 with ȧ~0!50. Behaviors comparable t
the present ones would be obtained by considering incid
waves of different amplitudes. In the caseD51 plotted with
a dashed line, we observe that the radiusa(z) oscillates with
a constant frequency, which represents steady oscillat
around the soliton form for the incident intensity factorP51.
Besides, described with a radius plotted in solid lines,
waveforms are observed to collapse forP51.5, and to
spread out forP50.8. More generally, collapse takes pla
when P exceeds the critical thresholdPc54/3 for self-
focusing, as expected, whereas the waves continuously
perse in the opposite rangeP,0.9,Pc . These results will
later be compared with a direct numerical integration of E
~1! and ~2! detailed in the next section. Finally, we mentio
that 3D waves were found to exhibit a radiusa(z) tending to
zero at a finite distancezc for P>1.5 and diverging for lower
intensity values, which describes a finite-distance colla
and an asymptotic spreading of the waves, respectiv
without forming soliton-type structures.

We must stress here that, by virtue of the self-similar
assumption imposed in the variational model, the estima
of Nw andNv remain unchanged alongz, in such a way that
the mass exchanges between the fundamental and se

FIG. 1. Evolution of the radiusa(z) vs z integrated from Eq.
~63! for D51 andPw5Pv[P51 ~dashed line!. In this case only,
thez axis has been rescaled by a factorA10 (ztrue5A10zFig.) to see
clearly the wave radius oscillates around a stable soliton-type fix
point solution. Solid lines represent the radiusa(z) computed in the
caseD52 for the intensity factorsP51.5.Pc ~lower curve!, yield-
ing a collapse at a finite propagation distance, andP50.8,Pc

~upper curve!, implying a wave spreading.
ic
p-
d

t
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nt

ns
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e
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harmonic waves are strictly forbidden by this approximati
method. Moreover, the present variational analysis assu
waveforms that remain forced with a Gaussian shape. C
sequently, these constraints may hereby introduce some
crepancies~in the collapse distance for instance!, compared
with the true numerically integrated solutions to Eqs.~1! and
~2!. As an example, it can be seen from the relation~65! that
the Hamiltonian—that is a constant of motion—diverges
the collapse regimesa(z)→0 for D53, when it is approxi-
mated with the self-similar trial solutions~60! and ~61!. In
the present context, the variational approach thus gives
proximated results that, although restoring the general
dencies of the coupled waves, must be regarded with cau

VII. NUMERICAL COMPUTATIONS

In this section, we present the results issued from num
cal integrations of Eqs.~1! and ~2! with s511, b50, and
r,l.0. We use a split-step Fourier method of second or
in z ~see, e.g.,@32#!, solving the linear and nonlinear parts o
the equations separately. The linear part is solved using F
rier transformations, while the nonlinear part is solved with
fourth-order Runge-Kutta method. The conservation of
total powerN was checked throughout the integration, with
relative error of less than 1025 for all the results presented

Collapsing solutions are investigated using a fixed reso
tion in all the coordinates. Thereby, two things can happ
~1! If the step size in the direction of propagation,Dz, is too
coarse, then the total powerN will not remain conserved
when the collapse singularity is approached. Because we
fine the maximum allowable deviationDN51025, this
means that the program will simply have to stop at a cert
distancezc preceding the true singularity. If we choseDz
sufficiently small, so thatN would remain conserved withou
exceeding the allowable deviation in the absence of collap
then zc could be expected to be a good measure of
‘‘real’’ collapse distance.~2! If the resolution in the trans-
verse direction,Dx5Dy, is too coarse, thenN will be con-
served for allz, but at some distance close to the collap
the system will behave as if it was discrete and we w
observe what is known as trapping@33#. Following this pro-
cedure, a collapse distance could still be estimated by vis
inspection, after the program integrated out to the preset
tegration length.

In the following, we have chosen the resolution in t
transverse direction to be sufficiently fine, so that the sche
~1! applies: for instance, in the 2D case, integrations w
performed with periodic boundary conditions within a bo
containing Nx3Ny points for transversal integration ste
sizes Dx5Dy50.1 covering the simulation domain
Lx5Nx3Dx andLy5Ny3Dy. In the 1D case, a better reso
lution was allowed. From this setup, we thus define the c
lapse distance as the distance where the deviation inN ex-
ceedsDN51025, and the program stops the integratio
automatically. By doing so, we do not have to estimate
upper limit of the possible collapse distance in order to lim
the length of integration, as we should do with the sche
~2!. In particular, when calculating the curves depicted
Figs. 2 and 3, this procedure offers a considerable reduc
in computer time.

All the numerical computations have been performed

d-
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incident waves having the same Gaussian shapes as the
used in the variational approach, namely,

w~r',0!5v~r',0!5AP exp~2r'
2 /2!, ~69!

with an identical intensity factorP and an identical initial
wave half-widtha~0!51. The mismatch parameterb was set
equal to zero. The specifications on the chosen length

FIG. 2. Critical powerN c
num above which both wavesw andv

are numerically observed to collapse for different values of
coupling parameters:r52 with varyingl ~increment stepDl51!
~a!, l51 with varyingr ~Dr51! ~b!. The dashed line represents th
theoretical value of the collapse thresholdNc and the dotted one the
lowest boundNlow . The lengths of the integration box used f
solving Eqs.~1! and ~2! are Lx5Ly512.8, Lz58 for a grid with
Nx3Ny5~128!2 points and an integration step sizeDz51023 in the
z direction.

FIG. 3. Normalized mean wave widtha(z)/a(0) vs the propa-
gation distancez, computed from the ratio of the virial integral
I (z)/I (0) with the initial data~69! for different dimension numbers
D and different intensity coefficientsP: D51, P51 ~dashed line!
with the simulation parameters:Lx551.2, Nx54096, and
Dz51023; D52, P51.5 ~solid line, lower curve! andD52, P50.8
~solid line, upper curve! with Lx5Ly525.6,Nx5Ny5256 for an
integration step sizeDz51023.
nes

of

integrationLx , Ly , the grid sizesNx , Ny and the integration
step size alongz have been pointed out in the figures. Th
numerically revealed value of the critical total power e
gaged in the collapse event in the caseD52 has been plotted
in Figs. 2~a! and 2~b! for different coupling parametersr and
l by varyingP. This value, denoted byNc

num, lies between
the two theoretical limitsNc andNlow , as expected. From
Fig. 2~a!, it can be noted, however, thatNc

num slightly ex-
ceeds the upper threshold for collapseNc in some finite
range ofl for a fixed r52. This weak discrepancy can b
explained by the fact that the constraintN.Nc does not
necessarily mean that the requirements for collapse, asH,0
andH (3)(z),0 in the caseb50, are fulfilled whateverzmay
be for this interval of parameter values.

e

FIG. 4. Evolution of 1D wave amplitudesuw(x,z)u ~a! and
uv(x,z)u ~b! vs z towards long-living solitonlike structures for a
incident intensityP51. The parameters of the numerical simulatio
areLx5204.8,Nx58192, andDz51024.
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In the following figures, the valuesr52 andl51 have
been used for comparison with the results obtained from
variational approach. For this choice of coupling paramet
collapse of both waves was observed to occur forD52
wheneverP.0.885 and the two waves were observed
spread out in the opposite domain ofP values:P,0.885.
These observations are in a good enough agreement wit
approximate behaviors resulting from the variational mod
according to which collapse develops forP.Pc54/3 while
waves can be expected to disperse forP,0.9.

Figure 3 illustrates the total mean radiusa(z) of the
waves, computed from the virial integrals and normaliz
with respect toa~0!. In the one-dimensional case, the radi

FIG. 5. Collapse of the coupled wave amplitudesuw(x,0,z)u ~a!
and uv(x,0,z)u ~b! vs the propagation distancez, plotted along the
line y50 in the caseD52 for an intensity factorP51.5. The simu-
lation parameters areLx5Ly525.6,Nx5Ny5256, andDz51023.
e
s,

the
l,

d

a(z) plotted with a dashed line forP51 first decreases, the
forms a minimum, and afterwards starts to increase asy
totically with z. This increase can be explained by the eva
ation of the excess mass to the boundaries, which allows
trapped waves to relax to soliton shapes. In its variatio
counterpart plotted in Fig. 1, the radiusa(z) can be seen to
exhibit a similar decrease in the early stage of propagat
However, unlike the true wave radius plotted in Fig. 3,a(z)
afterwards describes steady-state oscillations around the
ton solution. This discrepancy results from the constraint
conserved partial masses for self-similar trial function
which cannot restore the evacuation of the mass excess.
to this limitation of the variational approach, the wave rad
depicted in Fig. 1 cannot reach, e.g., a steady-state value

FIG. 6. Spreading of the wavesw ~a! andv ~b! vs z in the 2D
case for a weak intensity factorP50.8. The simulation has bee
performed with the same parameters as the ones indicated in F
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should have corresponded to the mean soliton width.
upper solid-lined curve plotted in Fig. 3 represents a conti
ously increasing radiusa(z) associated with a wave sprea
ing in the two-dimensional case for a weak intensity fact
P50.8. It can be seen to be in excellent agreement with
behavior illustrated in Fig. 1 for the same data. The low
curve indicates a continuous decrease ofa(z) when both
waves collapse in the 2D case for an intensity coeffici
P51.5 exceeding the critical thresholdPc54/3. Note that
the singularity develops before the half-widtha(z) reaches
zero. Besides the above-recalled limitations of the numer
scheme that partly prevent the solutions from reaching
actly the collapse distancezc , this arrest in the vanishing o
a(z) can also be explained by the well-known property a
cording to which collapsing solutions of NLS-type equatio
generally blow up and cease to exist before their associ
virial integral vanishes. In spite of these discrepancies rela
to the inner structure of the singular solutions to Eqs.~1! and
~2!, we can conclude that the variational approach resto
with reasonably good accuracy the main behaviors,
spreading and collapse, characterizing the evolution of
wave envelopesw andv.

In Fig. 4, the amplitudes of the coupled wavesw andv
have been plotted in the one-dimensional case forP51.
They illustrate the evolution of 1D trapped waves towa
stable solitonlike waveforms. During the early stages
propagation, the excess of mass outgoing from the cor
both waves to the boundaries is radiated away. Figures 5
6 show in the caseD52 the formation of self-focusing
spikes, due to collapse, for the intensity factorP51.5, and
the spreading of both waves when they carry a lower po
with P50.8, respectively. The complete dispersion of t
envelopev, shown in Fig. 6~b!, should forcew to vanish in
turn at largez, due to the mutual coupling of the two wave
described by Eqs.~1! and ~2!.

VIII. CONCLUSION

After deriving the main invariants and the virial identi
describing the evolution of the mean square radius, we h
investigated the mathematical properties of the coupled
damental and second-harmonic waves propagating in an
tical medium with both quadratic and cubic~Kerr! nonlin-
earities. Apart from few particular results concerni
different coupling parameters, this study was mainly devo
to so-called attractive nonlinear potentials, for which t
coupling constantsr andl are both assumed to be positiv
In addition, the dispersion coefficients was set equal to11.

Summarizing the principal results obtained here, we h
shown that 3D coupled waves can self-focus and collaps
a finite propagation distancezc under the sufficient require
ments ~34!, depending on the Hamiltonian and the to
power in the incident waves, as well as on the parameteb,
which represents the relative strength of the quadratic
cubic nonlinearities. In this situation, the absence of lo
minima in the functional dependences of the Hamilton
and the unboundedness of the latter indicate that no st
solitonlike states can emerge from the mutually trapp
waves.
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On the contrary, in the simpler basic model of 1D trapp
waves, collapse has been proved to never occur. In this c
the waves can remain coupled and asymptotically behav
self-trapped solitons that have been shown to be stable.

Finally, for the caseD52, although no exact criterion fo
the existence of collapsing solutions has been established
have proven that collapse does not occur when the powe
the two waves remain below some critical values for allz,
namely, Nw(z),Nw

c 5Nc/(r11) and Nv(z),N v
c5Nc/

(r1l), which is assured when the total power is sufficien
low and satisfiesN,Nlow[min$Nw

c ,4N v
c%. These conditions

can be viewed as the opposite ones to the requirements~30!
that assure, in the two-dimensional case, the collapse of
wave envelopes when the latter evolve within a purelyx~3!

medium. On the basis of the virial expression~36! and by
means of a variational approach, we also displayed str
evidence, supported by a numerical confirmation perform
for b50, that the mutually trapped waves can undergo
collapse under these same requirements~30!, even though
the presence ofx~2! nonlinearities is in favor of stabilizing
the coupled waves. Imposing both the constraints~30! im-
plies that the initial total powerN carried by the incident
waves on the whole has to exceed the critical va
Nc5Nw

c 14N v
c. The most salient role played by the qu

dratic nonlinearities alone is, in fact, that they may count
act the natural spreading of the waves by localizing the la
and force them to remain mutually trapped, so that the f
damental and second harmonic waves can evolve unde
form of stable coupled solitons. However, this behavior do
not exclude the feasibility of a wave collapse in media be
also sensitive to the wave intensity, i.e., to the Kerr effe
Thex~3! nonlinearity can thus dominate not only the natu
dispersion of the waves, but also the stabilizing influence
the x~2! nonlinearity, which justifies the collapse of bot
waves. Nevertheless, as the self-focusing power thres
may vary with the mismatch parameter in combin
x~2!2x~3! media, this direct comparison with a purely cub
medium, for whichb vanishes, restricts the validity of ou
theoretical predictions for collapse to values ofb close to
zero.

Finally, we postpone to forthcoming papers the quest
of realizing stable two-dimensional solitons in the presen
of both quadratic and cubic nonlinearities. In addition, w
underline that the role of large mismatch parameters on
collapse dynamics, the possible mass exchanges betwee
fundamental and second-harmonic waves and their influe
on the individual mean square radius of the coupled wav
have been disregarded in the present study, whose aim
mainly to give global dynamical behaviors. These proble
should also be cleared up in the near future.
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